Holismus und Fraunhoferlinie: Unterschied zwischen den Seiten

Aus AnthroWiki
(Unterschied zwischen Seiten)
imported>Odyssee
Keine Bearbeitungszusammenfassung
 
imported>Odyssee
 
Zeile 1: Zeile 1:
Der '''Holismus''' ({{ELSalt|ὅλος}} ''holos'' „ganz“) als moderne '''Ganzheitslehre''' vertritt den [[Erkenntnistheorie|erkenntnistheoretischen]] Standpunkt, dass ''das Ganze mehr ist als die Summe seiner Teile''. Die Bezeichnung wurde erstmals von [[Wikipedia:Jan Christiaan Smuts|Jan Christiaan Smuts]] in seinem [[Wikipedia:1926|1926]] erschienen Buch ''Holism and Evolution'' verwendet. Smuts schreibt dazu im Vorwort:
Die '''Fraunhoferlinien''' oder '''Fraunhofer'schen Linien''' sind [[Wikipedia:Absorptionslinie|Absorptionslinie]]n im [[Spektrum]] der [[Sonne]]. Sie entstehen durch [[Wikipedia:Resonanzabsorption|Resonanzabsorption]] der Gase in der [[Wikipedia:Photosphäre|Photosphäre]]. Die Fraunhoferlinien erlauben Rückschlüsse auf die chemische Zusammensetzung und Temperatur der Gasatmosphäre der Sonne und von Sternen.


{{Zitat|Dieser Faktor, der in der Folge Holismus genannt wird, liegt der synthetischen Tendenz im Universum zugrunde und ist das Prinzip, das für den Ursprung und den Fortschritt von Ganzheiten im Universum sorgt. Es wird versucht zu zeigen, dass diese ganzheitliche Tendenz von grundlegender Natur ist, dass sie einen gut gekennzeichneten, nachvollziehbaren Charakter hat und dass Evolution nichts ist als die allmähliche Entwicklung und Strukturierung einer fortschreitenden Reihe von Ganzheiten, die sich von den anorganischen Anfängen bis zu den höchsten Ebenen der geistigen Schöpfung erstrecken.|Jan Christiaan Smuts|''Holism and Evolution'', Vorwort|ref=<ref>„This factor, called Holism in the sequel, underlies the synthetic tendency in the universe, and is the principle which makes for the origin and progress of wholes in the universe. An attempt is made to show that this whole-making or holistic tendency is fundamental in nature, that it has a well-marked ascertainable character, and that Evolution is nothing but the gradual development and stratification of progressive series of wholes, stretching from the inorganic beginnings to the highest levels of spiritual creation.“<br />Jan Christiaan Smuts: ''Holism and Evolution'', Preface [https://archive.org/details/holismevolution00smut/page/n7]</ref>}}
[[file:Fraunhofer lines DE.svg|thumb|upright=2|Die wichtigsten Fraunhoferlinien im sichtbaren Bereich des elektromagnetischen Spektrums]]
[[File:FraunhoferLinesDiagram.jpg|thumb|[[Wikipedia:Echellegitter|Echellegitter]]-Spektrum der Sonne mit Fraunhoferlinien]]
[[File:Sonne Strahlungsintensitaet.svg|thumb|Die Furchen im Strahlungsspektrum der terrestrischen Sonnenstrahlung entsprechen den Fraunhoferlinien.]]


Ansätze zu einem holistischen Weltbild finden sich  aber schon viel früher bei [[Gottfried Wilhelm Leibniz]], [[Georg Wilhelm Friedrich Hegel]] und [[Aristoteles]].
== Entdeckung ==
Der englische Chemiker [[Wikipedia:William Hyde Wollaston|William Hyde Wollaston]] war 1802 der erste Beobachter von dunklen Linien im Sonnenspektrum. Diese wurden jedoch unabhängig von ihm 1814 vom [[Wikipedia:München|München]]er [[Optik]]er [[Wikipedia:Joseph von Fraunhofer|Joseph von Fraunhofer]] neuentdeckt<ref>{{Literatur | Autor=Joseph Fraunhofer | Titel=Bestimmung des Brechungs- und des Farbenzerstreungs-Vermögens verschiedener Glasarten, in Bezug auf die Vervollkommnung achromatischer Fernröhre | Sammelwerk=Annalen der Physik | Band=56 | Nummer=7 | Jahr=1817 | Seiten=264–313 | DOI=10.1002/andp.18170560706}}</ref>, welcher sie daraufhin systematisch studierte und durch sorgfältige Messungen deren Wellenlängen bestimmte. Insgesamt verzeichnete er über 570 Linien, wobei er die markanten unter ihnen mit den Buchstaben A bis K versah.<ref>Francis A. Jenkins, Harvey E. White: ''Fundamentals of Optics.'' 4. Ausgabe. McGraw-Hill, 1981, ISBN 0-07-256191-2, S. 18.</ref> Die weniger stark ausgeprägten Linien erhielten andere Buchstaben.


Der Holismus geht heute davon aus, dass die einzelnen Elemente, in die sich ein [[System]] gliedert, das als „[[Ganzheit]]“ oder „[[Gestalt]]“ aufgefasst wird, durch die inneren [[Struktur]]beziehungen vollständig bestimmt sind. Der Holismus steht damit im diametralen Gegensatz zu dem in den [[Naturwissenschaft]]en heute überwiegend vertretenen [[Reduktionismus]]. Das Hauptargument gegen den Reduktionismus ist dabei das Phänomen der [[Emergenz]]“, d.h. der nicht vollständigen Erklärbarkeit des Ganzen aus den Teilen. Dass die [[Welt]] aber auch aus [[physik]]alischer Sicht letzlich als Ganzheit zu betrachten ist, hat der [[Physik]]er [[Hans-Peter Dürr]] nachdrücklich betont:
Später entdeckten [[Wikipedia:Gustav Robert Kirchhoff|Gustav Robert Kirchhoff]] und [[Wikipedia:Robert Bunsen|Robert Bunsen]], dass jedes [[Chemisches Element|chemische Element]] mit einer spezifischen Anzahl und Anordnung von Spektrallinien assoziiert war. Sie schlossen hieraus, dass die von Wollaston und Fraunhofer beobachteten Linien den Absorptionseigenschaften dieser Elemente in den oberen Schichten der Sonne geschuldet waren und diese daher auch in der [[Wikipedia:Photosphäre|Photosphäre]] vorliegen mussten. Einige der Linien werden jedoch auch durch die Bestandteile der Erdatmosphäre hervorgerufen.


{{LZ|So steht das Getrennte (etwa durch die Vorstellung isolierter Atome) nach neuer Sichtweise nicht am Anfang der Wirklichkeit, sondern näherungsweise Trennung ist mögliches Ergebnis einer Strukturbildung, nämlich: Erzeugung von Unverbundenheit durch Auslöschung im Zwischenbereich (Dürr 1992). Die Beziehungen zwischen Teilen eines Ganzen ergeben sich also nicht erst sekundär als Wechselwirkung von ursprünglich Isoliertem, sondern sind Ausdruck einer primären Identität von allem. Eine Beziehungsstruktur entsteht also nicht nur durch Kommunikation, einem wechselseitigen Austausch von Signalen, verstärkt durch Resonanz, sondern gewissermaßen auch durch Kommunion, durch Identifizierung...
{| class="wikitable"
|+ Die wichtigsten Fraunhoferlinien
|- bgcolor=#dddddd
! Symbol
! [[Chemisches Element|Element]]
! style="border-right:2px solid #aaa" | [[Wikipedia:Wellenlänge|Wellenlänge]] in [[Wikipedia:Nanometer|nm]]
! Symbol
! Element
! Wellenlänge in nm
|-
| y
| [[Sauerstoff|O<sub>2</sub>]]
| style="border-right:2px solid #aaa" | 898,765
| c
| Fe
| 495,761
|-
| Z
| O<sub>2</sub>
| style="border-right:2px solid #aaa" | 822,696
| F
| H β
| 486,134
|-
| A
| O<sub>2</sub>
| style="border-right:2px solid #aaa" | 759,370
| d
| Fe
| 466,814
|-
| B
| O<sub>2</sub>
| style="border-right:2px solid #aaa" | 686,719
| e
| Fe
| 438,355
|-
| C
| [[Wasserstoff|H]] α
| style="border-right:2px solid #aaa" | 656,281
| G'
| H γ
| 434,047
|-
| a
| O<sub>2</sub>
| style="border-right:2px solid #aaa" | 627,661
| G
| Fe
| 430,790
|-
| [[Natrium-D-Linie|D<sub>1</sub>]]
| [[Natrium|Na]]
| style="border-right:2px solid #aaa" | 589,594
| G
| [[Calcium|Ca]]
| 430,774
|-
| [[Natrium-D-Linie|D<sub>2</sub>]]
| Na
| style="border-right:2px solid #aaa" | 588,997
| h
| H δ
| 410,175
|-
| D<sub>3</sub> oder d
| [[Helium|He]]
| style="border-right:2px solid #aaa" | 587,562
| H
| Ca<sup>+</sup>
| 396,847
|-
| e
| [[Quecksilber|Hg]]
| style="border-right:2px solid #aaa" | 546,073
| K
| Ca<sup>+</sup>
| 393,368
|-
| E<sub>2</sub>
| [[Eisen|Fe]]
| style="border-right:2px solid #aaa" | 527,039
| L
| Fe
| 382,044
|-
| b<sub>1</sub>
| [[Magnesium|Mg]]
| style="border-right:2px solid #aaa" | 518,362
| N
| Fe
| 358,121
|-
| b<sub>2</sub>
| Mg
| style="border-right:2px solid #aaa" | 517,270
| P
| [[Titan (Element)|Ti]]<sup>+</sup>
| 336,112
|-
| b<sub>3</sub>
| Fe
| style="border-right:2px solid #aaa" | 516,891
| T
| Fe
| 302,108
|-
| b<sub>4</sub>
| Fe
| style="border-right:2px solid #aaa" | 516,751
| t
| [[Nickel|Ni]]
| 299,444
|-
| b<sub>4</sub>
| Mg
| style="border-right:2px solid #aaa" | 516,733
|
|
|
|}


Die [[holistisch]]en Züge der Wirklichkeit, wie sie in der neuen fundamentalen Struktur der Materie zum Ausdruck kommen, bieten hierbei die entscheidende Voraussetzung dafür, daß die für uns wesentlichen Merkmale des Lebendigen dabei nicht zu mechanistischen Funktionen verstümmelt werden.|Dürr 1997}}
== Anwendung ==
Aufgrund ihrer bekannten Wellenlängen werden die Fraunhoferlinien oft zur Bestimmung des [[Wikipedia:Brechungsindex|Brechungsindex]] und der [[Wikipedia:Dispersion (Physik)|Dispersion]] von optischen Materialien genutzt.


Tatsächlich ist der einseitig holistische Ansatz nicht weniger problematisch als die einseitig reduktionistische Weltanschauung. Aus streng holistischer Sicht erklärt sich beispielsweise die menschliche [[Individualität]] restlos aus der Staats- und Gesellschaftsform, in der sie lebt, was offensichtlich falsch bzw. nicht die ganze Wahrheit ist, denn einzelne Individuen prägen ihrerseits durch ihre [[schöpferisch]]e Kraft die sozialen Gegebenheiten entscheidend mit.  
Bei der spektroskopischen Temperaturbestimmung lässt sich aus der Intensitätsverteilung des Spektrums und mit Hilfe der [[Wikipedia:Boltzmannverteilung|Boltzmannverteilung]] die Oberflächentemperatur ermitteln. Sind beispielsweise die [[Wikipedia:Balmer-Serie|Balmerlinien]] im [[Wikipedia:Sonnenstrahlung|Spektrum der Sonne]] als Fraunhoferlinien zu beobachten, so muss die Temperatur so hoch sein, dass bei einem Teil der Wasserstoffatome der erste angeregte Zustand (n&nbsp;=&nbsp;2) besetzt ist. Beispielsweise ist bei der Sonne mit 6000&nbsp;K Oberflächentemperatur jedes hundertmillionste Wasserstoffatom im ersten [[Wikipedia:Angeregter Zustand|angeregten Zustand]].


== Siehe auch ==
Die ersten Hinweise auf das chemische Element [[Helium]] waren 1868 seine Absorptionslinien im Spektrum des Sonnenlichts. In der Astronomie werden Fraunhoferlinien genutzt, um die Zusammensetzung von Sternen zu bestimmen.


* {{WikipediaDE|Holismus}}
Die Fraunhofer C-, F-, G'-, und h-Linien stimmen mit den alpha-, beta-, gamma- und delta-Linien der [[Wikipedia:Balmer-Serie|Balmer-Serie]] eines Wasserstoffatoms überein. Die Linien A, B, a, Y und Z sind nicht solaren, sondern terrestrischen Ursprungs, das heißt: Sie entstehen durch Absorption in der [[Wikipedia:Erdatmosphäre|Erdatmosphäre]].


== Literatur ==
== Einzelnachweise ==
<references />


* Jan Christiaan Smuts: ''Holism and Evolution'', Macmillan, New York 1926 [https://archive.org/details/holismevolution00smut archive.org]
== Weblinks ==
** deutsch: ''Die holistische Welt'', Mit einem Vorwort des Verfassers zur deutschen Ausgabe und einem Geleitwort von Adolf Meyer, herausgegeben und übersetzt von Helmut Minkowski, Metzner, Berlin 1938
{{Commons|Fraunhofer lines|Fraunhoferlinie}}
*[[Wikipedia:Hans-Peter Dürr|Hans-Peter Dürr]] (Hrsg.):  ''Rupert Sheldrake in der Diskussion'', Scherz-Verlag, Bern München Wien 1997, S 227ff


[[Kategorie:Grundbegriffe]] [[Kategorie:Philosophie]] [[Kategorie:Erkenntnistheorie]]
 
[[Kategorie:Sonne]]
[[Kategorie:Spektrum]]
 
{{Wikipedia}}

Version vom 26. Juni 2015, 10:07 Uhr

Die Fraunhoferlinien oder Fraunhofer'schen Linien sind Absorptionslinien im Spektrum der Sonne. Sie entstehen durch Resonanzabsorption der Gase in der Photosphäre. Die Fraunhoferlinien erlauben Rückschlüsse auf die chemische Zusammensetzung und Temperatur der Gasatmosphäre der Sonne und von Sternen.

Die wichtigsten Fraunhoferlinien im sichtbaren Bereich des elektromagnetischen Spektrums
Echellegitter-Spektrum der Sonne mit Fraunhoferlinien
Die Furchen im Strahlungsspektrum der terrestrischen Sonnenstrahlung entsprechen den Fraunhoferlinien.

Entdeckung

Der englische Chemiker William Hyde Wollaston war 1802 der erste Beobachter von dunklen Linien im Sonnenspektrum. Diese wurden jedoch unabhängig von ihm 1814 vom Münchener Optiker Joseph von Fraunhofer neuentdeckt[1], welcher sie daraufhin systematisch studierte und durch sorgfältige Messungen deren Wellenlängen bestimmte. Insgesamt verzeichnete er über 570 Linien, wobei er die markanten unter ihnen mit den Buchstaben A bis K versah.[2] Die weniger stark ausgeprägten Linien erhielten andere Buchstaben.

Später entdeckten Gustav Robert Kirchhoff und Robert Bunsen, dass jedes chemische Element mit einer spezifischen Anzahl und Anordnung von Spektrallinien assoziiert war. Sie schlossen hieraus, dass die von Wollaston und Fraunhofer beobachteten Linien den Absorptionseigenschaften dieser Elemente in den oberen Schichten der Sonne geschuldet waren und diese daher auch in der Photosphäre vorliegen mussten. Einige der Linien werden jedoch auch durch die Bestandteile der Erdatmosphäre hervorgerufen.

Die wichtigsten Fraunhoferlinien
Symbol Element Wellenlänge in nm Symbol Element Wellenlänge in nm
y O2 898,765 c Fe 495,761
Z O2 822,696 F H β 486,134
A O2 759,370 d Fe 466,814
B O2 686,719 e Fe 438,355
C H α 656,281 G' H γ 434,047
a O2 627,661 G Fe 430,790
D1 Na 589,594 G Ca 430,774
D2 Na 588,997 h H δ 410,175
D3 oder d He 587,562 H Ca+ 396,847
e Hg 546,073 K Ca+ 393,368
E2 Fe 527,039 L Fe 382,044
b1 Mg 518,362 N Fe 358,121
b2 Mg 517,270 P Ti+ 336,112
b3 Fe 516,891 T Fe 302,108
b4 Fe 516,751 t Ni 299,444
b4 Mg 516,733

Anwendung

Aufgrund ihrer bekannten Wellenlängen werden die Fraunhoferlinien oft zur Bestimmung des Brechungsindex und der Dispersion von optischen Materialien genutzt.

Bei der spektroskopischen Temperaturbestimmung lässt sich aus der Intensitätsverteilung des Spektrums und mit Hilfe der Boltzmannverteilung die Oberflächentemperatur ermitteln. Sind beispielsweise die Balmerlinien im Spektrum der Sonne als Fraunhoferlinien zu beobachten, so muss die Temperatur so hoch sein, dass bei einem Teil der Wasserstoffatome der erste angeregte Zustand (n = 2) besetzt ist. Beispielsweise ist bei der Sonne mit 6000 K Oberflächentemperatur jedes hundertmillionste Wasserstoffatom im ersten angeregten Zustand.

Die ersten Hinweise auf das chemische Element Helium waren 1868 seine Absorptionslinien im Spektrum des Sonnenlichts. In der Astronomie werden Fraunhoferlinien genutzt, um die Zusammensetzung von Sternen zu bestimmen.

Die Fraunhofer C-, F-, G'-, und h-Linien stimmen mit den alpha-, beta-, gamma- und delta-Linien der Balmer-Serie eines Wasserstoffatoms überein. Die Linien A, B, a, Y und Z sind nicht solaren, sondern terrestrischen Ursprungs, das heißt: Sie entstehen durch Absorption in der Erdatmosphäre.

Einzelnachweise

  1.  Joseph Fraunhofer: Bestimmung des Brechungs- und des Farbenzerstreungs-Vermögens verschiedener Glasarten, in Bezug auf die Vervollkommnung achromatischer Fernröhre. In: Annalen der Physik. 56, Nr. 7, 1817, S. 264–313, doi:10.1002/andp.18170560706.
  2. Francis A. Jenkins, Harvey E. White: Fundamentals of Optics. 4. Ausgabe. McGraw-Hill, 1981, ISBN 0-07-256191-2, S. 18.

Weblinks

Commons: Fraunhoferlinie - Weitere Bilder oder Audiodateien zum Thema


Dieser Artikel basiert (teilweise) auf dem Artikel Fraunhoferlinie aus der freien Enzyklopädie Wikipedia und steht unter der Lizenz Creative Commons Attribution/Share Alike. In Wikipedia ist eine Liste der Autoren verfügbar.