Neurotransmitter

Aus AnthroWiki

Neurotransmitter (von griech. νεῦρον neuron „Sehne, Nerv“ und lat. transmittere „hinüber schicken, übertragen“) sind Botenstoffe, die an chemischen Synapsen die Erregung von einer Nervenzelle auf andere Zellen übertragen (synaptische Transmission). Sie werden im Zellkörper oder in der Endigung des Axons vom sendenden Neuron produziert und in Quanten freigesetzt.

Wirkungsweise

Neurotransmitter sind Botenstoffe von Nervenzellen, mit denen die (präsynaptischen) elektrischen Signale eines Neurons an einer Synapse in chemische Signale umgebildet werden, die bei der nachgeordneten Zelle wieder (postsynaptische) elektrische Signale hervorrufen können.

In die präsynaptische Membranregion des Neurons fortgeleitete elektrische Impulse, Aktionspotentiale, veranlassen über kurzzeitigen Calciumeinstrom die Ausschüttung der Botenstoffe aus Vorratsspeichern, den synaptischen Vesikeln. Dieser Vorgang ist eine Exozytose: Durch Fusion der Vesikelmembranen mit der präsynaptischen Membran wird das je enthaltene Quantum an Transmittermolekülen in den (extrazellulären) synaptischen Spalt freigesetzt und gelangt per Diffusion zu den Rezeptoren auf der postsynaptischen Membran der nachgeschalteten Zelle.

Diese Membranproteine der subsynaptischen Region erkennen den jeweiligen Transmitter spezifisch an seiner molekularen räumlichen Struktur und Ladungsverteilung durch komplementäre Strukturen. Die Bindung eines Transmittermoleküls führt zur strukturellen Veränderung des Rezeptorproteins, wodurch direkt (ionotrop) oder mittelbar (metabotrop) bestimmte Ionenkanäle in dieser Region vorübergehend geöffnet werden.

Abhängig von der Zahl an Rezeptoren mit gebundenem Transmitter entstehen so Ionenströme verschiedener Stärke mit entsprechenden postsynaptischen Potentialdifferenzen (PSP). Diese sind nun – festgelegt über die Zuordnung von Rezeptoren in der Membran zu Ionenkanälen bestimmter Ionensorte – entweder depolarisierend, so dass sie als exzitatorisches postsynaptisches Potential (EPSP) eine Erregung der nachgeschalteten Zelle fördern bzw. zur Bildung eines Aktionspotentials führen, oder aber so, dass sie als inhibitorisches postsynaptisches Potential (IPSP) jene hemmen bzw. eine Erregung verhindern. Damit wird zwischen exzitatorischen und inhibitorischen Synapsen unterschieden.

Neben dem eigentlichen Neurotransmitter werden nicht selten noch Kotransmitter ausgeschüttet (Kotransmission), welche die Erregungsübertragung auf verschiedene Weise als Neuromodulatoren beeinflussen können. Die Bindung von Transmittern an Rezeptormoleküle ist in der Regel reversibel, nach Ablösung somit erneut möglich. Begrenzt wird ihre Wirkung nicht allein durch Diffusion, sondern durch enzymatische Spaltung (z. B. Cholinesterasen), Aufnahme in Gliazellen, präsynaptische Wiederaufnahme in das Neuron oder auch eine postsynaptische Internalisation samt Rezeptor (als Endozytose). Daneben ist postsynaptisch die prompte Inaktivation von Ionenkanälen (Desensitivierung) möglich. Weiterhin können präsynaptisch gelegene Autorezeptoren für den Transmitter dessen Freisetzung negativ rückgekoppelt beschränken. Darüber hinaus sind zahlreiche weitere präsynaptische Rezeptoren bekannt, überwiegend metabotrop G-Protein-gekoppelte Rezeptoren, womit sich vielfältige Modifikationen synaptischer Übertragung ergeben.[1]

Für die Wirkung einer synaptischen Transmission ist nicht die präsynaptisch als Transmitter ausgeschüttete chemische Substanz entscheidend, sondern die postsynaptisch ausgebildete Empfänglichkeit der nachgeordneten Zelle. Beispielsweise ruft der gleiche Transmitter Acetylcholin im Skelettmuskel – vermittelt über ionotrope nikotinische NM-Cholinozeptoren – eine Depolarisation hervor, jedoch im Herzmuskel – vermittelt über metabotrope muskarinische M2-Cholinozeptoren – eine Hyperpolarisation. Im einen Fall führt dies zu einer Erregung von Skelettmuskelfasern, im anderen Fall zu einer Abnahme der Erregbarkeit von Herzmuskelzellen.[2]

Beispiele

Der wichtigste Transmitter im peripheren Nervensystem ist Acetylcholin, so nicht nur an der motorischen Endplatte von Muskelfasern, sondern auch im parasympathischen Teil des vegetativen Nervensystems sowie präganglionär im sympathischen Teil, postganglionär wird hier meist Noradrenalin ausgeschüttet (doch sind z. B. die Schweißdrüsen cholinerg innerviert).

Der wichtigste Neurotransmitter im zentralen Nervensystem (ZNS) ist Glutamat, mit erregender Wirkung; die wichtigsten Transmitter inhibitorischer Synapsen sind Gamma-Aminobuttersäure (GABA) und Glycin. Andere häufige Neurotransmitter sind Dopamin und Serotonin neben Acetylcholin und Noradrenalin, auch bei Synapsen im ZNS.

Chemische Zuordnung

Biochemisch betrachtet sind die meisten bekannten Neurotransmitter neben Acetylcholin (aus Cholin, cholinerge Übertragung) entweder

Daneben fungieren Phosphosester von Purinen wie AMP, ADP, ATP sowie UDP und UTP auch an Synapsen als (Ko-)Transmitter.[3]

Einteilung

Neurotransmitter können zunächst nach Stoffklassen eingeteilt werden.

Lösliche Gase

Biogene Amine

Aminosäuren

  • Inhibitorische Aminosäuretransmitter
  • Exzitatorische Aminosäuretransmitter

Neuropeptide

Endocannabinoide

Siehe auch

Weblinks

Commons: Neurotransmitter - Weitere Bilder oder Audiodateien zum Thema

Einzelnachweise

  1.  Stefan Silbernagl, Agamemnon Despopoulos: Taschenatlas Physiologie. 8. Auflage. Thieme, Stuttgart 2012, ISBN 978-3-13-567708-8, S. 58 und andere (eingeschränkte Vorschau in der Google Buchsuche).
  2.  Stefan Silbernagl, Agamemnon Despopoulos: Taschenatlas Physiologie. S. 86f (eingeschränkte Vorschau in der Google Buchsuche).
  3.  Stefan Silbernagl, Agamemnon Despopoulos: Taschenatlas Physiologie. S. 90f (eingeschränkte Vorschau in der Google Buchsuche).


Dieser Artikel basiert (teilweise) auf dem Artikel Neurotransmitter aus der freien Enzyklopädie Wikipedia und steht unter der Lizenz Creative Commons Attribution/Share Alike. In Wikipedia ist eine Liste der Autoren verfügbar.