Die Schrift ohne Titel und Spektrum: Unterschied zwischen den Seiten

Aus AnthroWiki
(Unterschied zwischen Seiten)
imported>Odyssee
Keine Bearbeitungszusammenfassung
 
imported>Odyssee
 
Zeile 1: Zeile 1:
'''Die Schrift ohne Titel''' ist ein unter den [[Nag-Hammadi-Schriften]] (NHC II, 5) gefundener [[Gnosis|gnostischer]] Text „Über den Ursprung der Welt“ - wie die Schrift auch manchmal genannt wird - und hat seine endgültige Gestalt vermutlich erst Ende des [[Wikipedia:3. Jahrhundert|3.]] oder Anfang des [[Wikipedia:4. Jahrhundert|4. Jahrhundert]]s erhalten<ref>[[Wikipedia:Gerd Lüdemann|Gerd Lüdemann]], Martina Janßen: ''Bibel der Häretiker'', Stuttgart 1997, ISBN 3-87173-128-5 [http://web.archive.org/web/20070807112928/http://wwwuser.gwdg.de/~rzellwe/nhs/node105.html]</ref>.
[[Datei:Farbspektrum1.jpg|mini|400px|Farbspektrum]]
[[Datei:Visible spectrum of hydrogen.jpg|400px|mini|Atomspektrum (Emmisionsspektrum) des [[Wasserstoff]]s im sichtbaren Bereich]]
[[Datei:Fraunhofer lines DE.svg|400px|mini|Die wichtigsten [[Fraunhoferlinie]]n (Absorbtionslinien) im Spektrum der [[Sonne]].]]


Die Schrift schildert kein umfassendes gnostisches System und kann auch keiner bestimmten gnostischen Schule zugeordnet werden, sondern konzentriert sich vor allem auf die Entstehung des [[Mensch]]en und deutet das Geschehen des [[Sündenfall]]s in völlig neuer Weise. Das Ende der Welt wird im Sinn einer umfassenden [[Erlösung]]slehre dargestellt.
Als '''Spektrum''' (von [[lat.]] ''spectrum''  „[[Bild]]“, „[[Erscheinung]]“, „[[Gespenst]]“) wird in [[wissenschaft]]lichen Zusammenhängen ganz allgemein eine nach einer bestimmten Eigenschaft aufgefächerte, geordnete Intensitäts- bzw. Häufigkeitsverteilung innerhalb eines spezifischen Erscheinungsbereiches bezeichnet. Ein Gerät, mit dem eine derartige '''Spektralanalyse''' durchgeführt werden kann, wird '''Spektroskop''' genannt. Spektren und die darauf bezogene [[Spektralanalyse]] ([[Spektroskopie]]) spielen aber auch in rein [[Mathematik|mathematischen]] Zusammenhängen eine wichtige Rolle.


== Anmerkungen ==
== Beispiele ==


<references/>
=== [[Farbspektrum]] ===


== Literatur ==
{{Hauptartikel|Farbspektrum}}


#[[Wikipedia:Gerd Lüdemann|Gerd Lüdemann]], Martina Janßen: ''Bibel der Häretiker - Die gnostischen Schriften aus Nag Hammadi'', Radius Verlag, Stuttgart 1997, ISBN 3-87173-128-5
Das bekannteste Beispiel ist das sich im [[Phänomen]] des [[Regenbogen]]s offenbarende [[Farbspektrum]], in dem die [[Regenbogenfarben]] aufgefächert und geordnet nach ihrer [[Farben|Farbqualität]] erscheinen, von den dunklen [[Rot]]tönen, über [[Orange]], [[Gelb]] und [[Grün]], bis hin zu den tiefen [[blau]]en und [[violett]]en Farben.
 
=== Frequenzspektrum ===
 
Das '''Frequenzspektrum''' eines [[Signal]]s zeigt dessen Zusammensetzung aus verschiedenen [[Frequenz]]en und kann mithilfe der [[Fouriertransformation]] berechnet werden. Dabei wird eine komplexe [[Welle]] mathematisch in reine [[Sinuswelle]]n zerlegt.
 
Eine natürliche Störgröße, die den ''Untergrund'' in einem breiten [[Frequenzbereich]] bildet, wird als '''Rauschen''' bezeichnet. Ein Rauschen mit konstantem [[Leistungsdichespektrum]] nennt man '''weißes Rauschen'''.
 
=== Atomspektrum ===
 
Das '''Atomspektrum''' ist das '''Emissionsspektrum''' eines einzelnen [[Atom]]s. Es handelt sich dabei im Gegensatz zum Spektrum eines glühenden Körpers oder Gases nicht um ein kontinuierliches Farbspektrum, sondern um ein diskontinuierliches '''Linienspektrum''', das nur aus einzelnen farbigen Linien, den [[Spektrallinien]], besteht, deren Zahl und Anordnung charakteristisch für das jeweilige [[chemisches Element|chemische Element]] sind. Diesem typischen Emissionsspektrum entspricht ein genau gleich angeordnetes '''Absorptionspektrum''', wodurch etwa im Farbspektrum der [[Sonne]] die markanten schwarzen [[Fraunhoferlinie]]n entstehen (vgl. dazu die Abbildungen oben).
 
=== Bandenspektrum und kontinuierliches Spektrum ===
 
Sind die [[Spektrallinien]] so [[Linienbreite|verbreitert]], dass sie dicht an dicht liegen oder einender überlappen, so entsteht ein '''Bandenspektrum''' und schließlich ein '''kontinuierliches Spektrum''', wie es für dichte glühende Körper typisch ist.
 
=== Elektromagnetisches Spektrum ===
 
Ein abstrakteres Beispiel ist das '''elektromagnetische Spektrum''', in dem die [[Elektromagnetische Welle|elektromagnetischen Wellen]] nach ihrer [[Frequenz]] oder [[Wellenlänge]] aufgefächert werden.
 
{{Elektromagnetisches Spektrum}}
 
Da aus [[physik]]alischer Sicht elektromagnetische Wellen die physikalischen Träger auch aller [[Licht]]- bzw. [[Farben|Farberscheinungen]] sind, kann jeder Farbe auch eine bestimmte Wellenlänge oder Frequenz zugeordnet werden. So entspricht etwa den roten Farbtönen ein Wellenlängenbereich von ungefähr 790–630 [[Nanometer|nm]], den violetten Farben ein Bereich von etwa 420–390 [[Nanometer|nm]]. Nach der [[1900]] von [[Max Planck]] aufgestellten [[Quantenhypothese]] wird die elektromagnetische Strahlung in einzelnen Energiepaketen, den [[Quanten]], ausgesendet, d.h. nicht [[kontinuierlich]], sondern in Form einzelner Strahlungsblitze ([[Photon]]en). Dabei besteht folgender Zusammenhang zwischen der Strahlungsenergie <math>E</math> und der Frequenz <math>\nu</math>:
 
:<math>E = h \nu </math> mit dem [[Plancksches Wirkungsquantum|Planckschen Wirkungsquantum]] <math>h = 6{,}626\,069\,57 \cdot 10^{-34} \mathrm{J \cdot s}</math>
 
Dass damit das [[Wesen]] des Lichts, der Wärme usw. ''nicht'' erfasst wird, liegt auf der Hand. Wellen und Schwingungen sind Bewegungsvorgänge und als solche vollkommen verschieden von den erlebten Farb- oder Wärmequalitäten. Zwar sind elektromagnetischen Wellen dazu notwendig, dass die [[sinnlich]]e Wahrnehmung der Farben überhaupt zustande kommt, aber sie haben mit dem ''Inhalt'' dieser Wahrnehmung, also mit den erlebten ''Qualia'' ganz und gar nichts zu tun. Darauf hat [[Rudolf Steiner]] schon in seinen [[Einleitungen zu Goethes Naturwissenschaftlichen Schriften]] ganz klar hingewiesen:
 
{{GZ|Dass ein
Schwingungsvorgang im Äther vorgeht, während vor mir «Rot»
auftritt, das soll nicht bestritten werden. Aber was ''real'' eine
Wahrnehmung zustande bringt, das hat, wie wir schon gezeigt
haben, mit dem ''Wesen des Inhaltes'' gar nichts zu tun [...]
 
Dies ist ja aber von vornherein klar. Wenn man untersucht, was
in dem Räumlich-Ausgedehnten vorgeht, während die in Rede
stehenden Entitäten vermittelt werden, dann muss man auf eine
''einheitliche'' Bewegung kommen.
 
Denn ein Medium, in dem ''nur'' Bewegung möglich ist, muss auf
alles durch Bewegung reagieren. Es wird auch alle
Vermittelungen, die es übernehmen muss, durch Bewegung
vollbringen. Wenn ich dann die Formen dieser Bewegung
untersuche, dann erfahre ich nicht: was das Vermittelte ''ist'',
sondern auf welche Weise es an mich gebracht wird. Es ist
einfach ein Unding, zu sagen: Wärme oder Licht seien
Bewegung. Bewegung ist nur die Reaktion der
bewegungsfähigen Materie auf das Licht.|1|298ff|293}}
 
=== Massenspektrum ===
[[Datei:Massenspektrum Tetrachlordibenzofuran.svg|thumb|400px|Massenspektrum von [[Wikipedia:Tetrachlordibenzofuran|Tetrachlordibenzofuran]]]]
 
In einem [[Wikipedia:Massenspektrometer|Massenspektrometer]], einem wichtigen Hilfsmittel für die [[Analytische Chemie|chemische Analyse]], werden winzige [[Materie|Substanzmengen]] nach ihrer [[Masse]] aufgetrennt. Die Probe wird dazu verdampft, ionisiert und in Bruchstücke fragmentiert. Die dabei gebildeten [[Ion]]en werden durch ein [[elektrisches Feld]] beschleunigt und im Analysator durch ein [[magnetisches Feld]] nach ihrem Masse/Ladungs-Verhältnis aufgefächert. Aus der gemessenen Masse der Bruchstücke kann die [[chemische Struktur]] der Probe erschlossen werden.
 
== Siehe auch ==
* {{WikipediaDE|Spektrum}}
* {{WikipediaDE|Elektromagnetishes Spektrum}}
 
==Literatur==
* [[Rudolf Steiner]]: ''Einleitungen zu Goethes Naturwissenschaftlichen Schriften'', [[GA 1]] (1987), ISBN 3-7274-0011-0 {{Schriften|001}}
 
{{GA}}


== Weblinks ==
== Weblinks ==
#[http://web.archive.org/web/20070807112928/http://wwwuser.gwdg.de/~rzellwe/nhs/node106.html Die Schrift ohne Titel (NHC II,5)] (Übersetzung von Gerd Lüdemann und Martina Janßen)
{{Commonscat|Spectroscopy|Spektroskopie}}
#[http://www.gerd-albrecht.de/Die%20Gnostischen%20Schriften/Die%20Schrift%20ohne%20Titel.htm Die Schrift ohne Titel] (deutsche Übersetzung)
 
== Einzelnachweise ==
 
<references />


[[Kategorie:Nag-Hammadi-Schriften]] [[Kategorie:Gnosis]]
[[Kategorie:Optik]] [[Kategorie:Spektroskopie]]

Version vom 9. August 2019, 09:55 Uhr

Farbspektrum
Atomspektrum (Emmisionsspektrum) des Wasserstoffs im sichtbaren Bereich
Die wichtigsten Fraunhoferlinien (Absorbtionslinien) im Spektrum der Sonne.

Als Spektrum (von lat. spectrumBild“, „Erscheinung“, „Gespenst“) wird in wissenschaftlichen Zusammenhängen ganz allgemein eine nach einer bestimmten Eigenschaft aufgefächerte, geordnete Intensitäts- bzw. Häufigkeitsverteilung innerhalb eines spezifischen Erscheinungsbereiches bezeichnet. Ein Gerät, mit dem eine derartige Spektralanalyse durchgeführt werden kann, wird Spektroskop genannt. Spektren und die darauf bezogene Spektralanalyse (Spektroskopie) spielen aber auch in rein mathematischen Zusammenhängen eine wichtige Rolle.

Beispiele

Farbspektrum

Hauptartikel: Farbspektrum

Das bekannteste Beispiel ist das sich im Phänomen des Regenbogens offenbarende Farbspektrum, in dem die Regenbogenfarben aufgefächert und geordnet nach ihrer Farbqualität erscheinen, von den dunklen Rottönen, über Orange, Gelb und Grün, bis hin zu den tiefen blauen und violetten Farben.

Frequenzspektrum

Das Frequenzspektrum eines Signals zeigt dessen Zusammensetzung aus verschiedenen Frequenzen und kann mithilfe der Fouriertransformation berechnet werden. Dabei wird eine komplexe Welle mathematisch in reine Sinuswellen zerlegt.

Eine natürliche Störgröße, die den Untergrund in einem breiten Frequenzbereich bildet, wird als Rauschen bezeichnet. Ein Rauschen mit konstantem Leistungsdichespektrum nennt man weißes Rauschen.

Atomspektrum

Das Atomspektrum ist das Emissionsspektrum eines einzelnen Atoms. Es handelt sich dabei im Gegensatz zum Spektrum eines glühenden Körpers oder Gases nicht um ein kontinuierliches Farbspektrum, sondern um ein diskontinuierliches Linienspektrum, das nur aus einzelnen farbigen Linien, den Spektrallinien, besteht, deren Zahl und Anordnung charakteristisch für das jeweilige chemische Element sind. Diesem typischen Emissionsspektrum entspricht ein genau gleich angeordnetes Absorptionspektrum, wodurch etwa im Farbspektrum der Sonne die markanten schwarzen Fraunhoferlinien entstehen (vgl. dazu die Abbildungen oben).

Bandenspektrum und kontinuierliches Spektrum

Sind die Spektrallinien so verbreitert, dass sie dicht an dicht liegen oder einender überlappen, so entsteht ein Bandenspektrum und schließlich ein kontinuierliches Spektrum, wie es für dichte glühende Körper typisch ist.

Elektromagnetisches Spektrum

Ein abstrakteres Beispiel ist das elektromagnetische Spektrum, in dem die elektromagnetischen Wellen nach ihrer Frequenz oder Wellenlänge aufgefächert werden.

Das elektromagnetische Spektrum im Überblick
Bezeichnung Unterteilung Wellenlänge Frequenz Photonenenergie[1][2] Erzeugung / Anregung Technischer Einsatz
von bis von bis
Niederfrequenz Extremely Low Frequency (ELF) 10.000 km 100.000 km 30 Hz 3 Hz > 2,0 × 10−33 J
  > 12 feV
Bodendipol, Antennenanlagen, Schumann-Frequenzen Bahnstrom
Super Low Frequency (SLF) 1.000 km 10.000 km 300 Hz 30 Hz > 2,0 × 10−32 J
  > 120 feV
Netzfrequenz, (ehemals) U-Boot-Kommunikation
Ultra Low Frequency (ULF) 100 km 1000 km 3000 Hz
3 kHz
300 Hz
0,3 kHz
> 2,0 × 10−31 J
  > 1,2 peV
Very Low Frequency (VLF)
Myriameterwellen
Längstwellen (SLW)
10 km 100 km 30 kHz 3 kHz > 2,0 × 10−30 J
  > 12 peV
U-Boot-Kommunikation (DHO38, ZEVS, Sanguine, SAQ), Funknavigation, Pulsuhren
Radiowellen Langwelle (LW) 1 km 10 km 300 kHz 30 kHz > 2,0 × 10−29 J
  > 120 peV
Oszillatorschaltung + Antenne Langwellenrundfunk, DCF77, Induktionskochfeld
Mittelwelle (MW) 100 m 1000 m 3 MHz 300 kHz > 2· × 10−28 J
> 1,2 neV
Mittelwellenrundfunk, HF-Chirurgie, (1,7 MHz-3 MHz Grenzwelle, Kurzwellenrundfunk)
Kurzwelle (KW) 10 m 100 m 30 MHz 3 MHz > 1,1 × 10−27 J
> 12 neV
Grenzwelle, Kurzwellenrundfunk, HAARP, Diathermie, RC-Modellbau
Ultrakurzwelle (UKW) 1 m 10 m 300 MHz 30 MHz > 2,0 × 10−26 J
> 120 neV
Anregung von Kernspinresonanz Hörfunk, Fernsehen, Radar, Magnetresonanztomografie
Mikrowellen[3] Dezimeterwellen 10 cm  1 m 3 GHz 300 MHz > 2,0 × 10−25 J
> 1,2 µeV
Magnetron, Klystron, Maser, kosmische Hintergrundstrahlung

Anregung von Kernspinresonanz und Elektronenspinresonanz, Molekülrotationen

Radar, Magnetresonanztomografie, Mobilfunk, Fernsehen, Mikrowellenherd, WLAN, Bluetooth, GPS
Zentimeterwellen 1 cm  10 cm 30 GHz 3 GHz > 2,0 × 10−24 J
 > 12 µeV
Radar, Radioastronomie, Richtfunk, Satellitenrundfunk, WLAN
Millimeterwellen 1 mm 1 cm 300 GHz
0,3 THz
30 GHz > 2,0 × 10−23 J
> 120 µeV
Radar, Radioastronomie, Richtfunk
Terahertzstrahlung 30 µm 3 mm 10 THz 0,1 THz > 6,6 × 10−23 J
> 0,4 meV
Synchrotron, Freie-Elektronen-Laser Radioastronomie, Spektroskopie, Abbildungsverfahren, Sicherheitstechnik
Infrarotstrahlung (Wärmestrahlung) Fernes Infrarot (FIR) 50 µm 1 mm 6 THz 300 GHz > 2,0 × 10−22 J
> 1,2 meV
Wärmestrahler, Synchrotron
Molekülschwingungen
Infrarotspektroskopie, Raman-Spektroskopie, Infrarotastronomie
Mittleres Infrarot (MIR) 3,0 µm 50 µm 100 THz 6 THz > 4,0 × 10−21 J
> 25 meV
Kohlendioxidlaser, Quantenkaskadenlaser Thermografie
Nahes Infrarot (NIR) 780 nm 3,0 µm 385 THz 100 THz > 8,0 × 10−20 J
> 500 meV
Nd:YAG-Laser, Laserdiode, Leuchtdiode Fernbedienung, Datenkommunikation (IRDA), CD
Licht Rot 640 nm 780 nm 468 THz 384 THz 1,59–1,93 eV Wärmestrahler (Glühlampe), Gasentladung (Neonröhre), Farbstoff- und andere Laser, Synchrotron, Leuchtdiode
Anregung von Valenzelektronen
DVD, Laserpointer,
Rot, Grün: Lasernivellier,
Beleuchtung,
Colorimetrie,
Fotometrie,
Rot, Gelb, Grün: Lichtzeichenanlage,
Violett: Blu-ray Disc
Orange 600 nm 640 nm 500 THz 468 THz 1,93–2,06 eV
Gelb 570 nm 600 nm 526 THz 500 THz 2,06–2,17 eV
Grün 490 nm 570 nm 612 THz 526 THz 2,17–2,53 eV
Blau 430 nm 490 nm 697 THz 612 THz 2,53–2,88 eV
Violett 380 nm 430 nm 789 THz 697 THz 2,88–3,26 eV
UV-Strahlen[4] Nahes UV (UV-A, „Schwarzlicht“) 315 nm 380 nm 952 THz 789 THz 3,26–3,94 eV Gasentladung, Synchrotron, Excimerlaser, Leuchtdiode Schwarzlicht Fluoreszenz, Phosphoreszenz, Banknotenprüfung, Fotolithografie, Desinfektion, UV-Licht, Spektroskopie
Mittleres UV (UV-B, „Dorno-Strahlung“) 280 nm 315 nm 1071 THz
1 PHz
952 THz 3,94–4,43 eV
Fernes UV (UV-C, FUV) 200 nm 280 nm 1,5 PHz 1 PHz 4,43–6,2 eV
Vakuum-UV (UV-C, VUV) 100 nm 200 nm 3 PHz 1,5 PHz > 9,9 × 10−19 J
6,2–12 eV
XUV-Röhre, Synchrotron, Nanoplasma EUV-Lithografie, Röntgenmikroskopie, Nanoskopie
EUV (EUV) 10 nm 121 nm 30 PHz 2,5 PHz >5,0 × 10−18 J

10,2–120 eV

Röntgenstrahlen 10 pm 10 nm 30 EHz 30 PHz > 2,0 × 10−16 J
> 120 eV
Röntgenröhre, Synchrotron

Anregung von inneren Elektronen, Auger-Elektronen

medizinische Diagnostik, Sicherheitstechnik, Röntgen-Strukturanalyse, Röntgenbeugung, Photoelektronenspektroskopie, Röntgenabsorptionsspektroskopie
Gammastrahlen 10 pm 30 EHz > 2,0 × 10−14 J
> 120 keV
Radioaktivität, Annihilation
Anregung von Kernzuständen
medizinische Strahlentherapie, Mößbauerspektroskopie
Das elektromagnetische Spektrum mit dem Spektrum der sichtbaren Farben im Detail

Da aus physikalischer Sicht elektromagnetische Wellen die physikalischen Träger auch aller Licht- bzw. Farberscheinungen sind, kann jeder Farbe auch eine bestimmte Wellenlänge oder Frequenz zugeordnet werden. So entspricht etwa den roten Farbtönen ein Wellenlängenbereich von ungefähr 790–630 nm, den violetten Farben ein Bereich von etwa 420–390 nm. Nach der 1900 von Max Planck aufgestellten Quantenhypothese wird die elektromagnetische Strahlung in einzelnen Energiepaketen, den Quanten, ausgesendet, d.h. nicht kontinuierlich, sondern in Form einzelner Strahlungsblitze (Photonen). Dabei besteht folgender Zusammenhang zwischen der Strahlungsenergie und der Frequenz :

mit dem Planckschen Wirkungsquantum

Dass damit das Wesen des Lichts, der Wärme usw. nicht erfasst wird, liegt auf der Hand. Wellen und Schwingungen sind Bewegungsvorgänge und als solche vollkommen verschieden von den erlebten Farb- oder Wärmequalitäten. Zwar sind elektromagnetischen Wellen dazu notwendig, dass die sinnliche Wahrnehmung der Farben überhaupt zustande kommt, aber sie haben mit dem Inhalt dieser Wahrnehmung, also mit den erlebten Qualia ganz und gar nichts zu tun. Darauf hat Rudolf Steiner schon in seinen Einleitungen zu Goethes Naturwissenschaftlichen Schriften ganz klar hingewiesen:

„Dass ein Schwingungsvorgang im Äther vorgeht, während vor mir «Rot» auftritt, das soll nicht bestritten werden. Aber was real eine Wahrnehmung zustande bringt, das hat, wie wir schon gezeigt haben, mit dem Wesen des Inhaltes gar nichts zu tun [...]

Dies ist ja aber von vornherein klar. Wenn man untersucht, was in dem Räumlich-Ausgedehnten vorgeht, während die in Rede stehenden Entitäten vermittelt werden, dann muss man auf eine einheitliche Bewegung kommen.

Denn ein Medium, in dem nur Bewegung möglich ist, muss auf alles durch Bewegung reagieren. Es wird auch alle Vermittelungen, die es übernehmen muss, durch Bewegung vollbringen. Wenn ich dann die Formen dieser Bewegung untersuche, dann erfahre ich nicht: was das Vermittelte ist, sondern auf welche Weise es an mich gebracht wird. Es ist einfach ein Unding, zu sagen: Wärme oder Licht seien Bewegung. Bewegung ist nur die Reaktion der bewegungsfähigen Materie auf das Licht.“ (Lit.:GA 1, S. 298ff)

Massenspektrum

Massenspektrum von Tetrachlordibenzofuran

In einem Massenspektrometer, einem wichtigen Hilfsmittel für die chemische Analyse, werden winzige Substanzmengen nach ihrer Masse aufgetrennt. Die Probe wird dazu verdampft, ionisiert und in Bruchstücke fragmentiert. Die dabei gebildeten Ionen werden durch ein elektrisches Feld beschleunigt und im Analysator durch ein magnetisches Feld nach ihrem Masse/Ladungs-Verhältnis aufgefächert. Aus der gemessenen Masse der Bruchstücke kann die chemische Struktur der Probe erschlossen werden.

Siehe auch

Literatur

Literaturangaben zum Werk Rudolf Steiners folgen, wenn nicht anders angegeben, der Rudolf Steiner Gesamtausgabe (GA), Rudolf Steiner Verlag, Dornach/Schweiz Email: verlag@steinerverlag.com URL: www.steinerverlag.com.
Freie Werkausgaben gibt es auf steiner.wiki, bdn-steiner.ru, archive.org und im Rudolf Steiner Online Archiv.
Eine textkritische Ausgabe grundlegender Schriften Rudolf Steiners bietet die Kritische Ausgabe (SKA) (Hrsg. Christian Clement): steinerkritischeausgabe.com
Die Rudolf Steiner Ausgaben basieren auf Klartextnachschriften, die dem gesprochenen Wort Rudolf Steiners so nah wie möglich kommen.
Hilfreiche Werkzeuge zur Orientierung in Steiners Gesamtwerk sind Christian Karls kostenlos online verfügbares Handbuch zum Werk Rudolf Steiners und Urs Schwendeners Nachschlagewerk Anthroposophie unter weitestgehender Verwendung des Originalwortlautes Rudolf Steiners.

Weblinks

Commons: Spektroskopie - Weitere Bilder oder Audiodateien zum Thema

Einzelnachweise

  1. CODATA Recommended Values. National Institute of Standards and Technology, abgerufen am 4. August 2015.
  2. CODATA Recommended Values. National Institute of Standards and Technology, abgerufen am 21. Juli 2015. Wert für die Elementarladung in der Einheit Coulomb.
  3. gehören nach der Definition der VO Funk, Ausgabe 2012, Artikel 1.5 auch noch zu den Radiowellen.
  4. Deutsches Institut für Normung (Hrsg.): Strahlungsphysik im optischen Bereich und Lichttechnik; Benennung der Wellenlängenbereiche. DIN 5031 Teil 7, Januar 1984.