Herzmuskel

Aus AnthroWiki
Die druckbare Version wird nicht mehr unterstützt und kann Darstellungsfehler aufweisen. Bitte aktualisiere deine Browser-Lesezeichen und verwende stattdessen die Standard-Druckfunktion des Browsers.
Herzmuskelzellen im Längs- und Querschnitt, schematische Darstellung
Glanzstreifen im Myokard einer Maus
Reizantwort der Herzmuskulatur

Der Herzmuskel oder Myokard (lat. myocardium) bildet den größten Teil der Wand des Herzens. Die Herzmuskulatur wird außen vom Epikard und innen von der Herzinnenhaut (Endokard) umgeben. Der Herzmuskel ist ein Hohlmuskel, der einen für seine Kontraktion mit Volumenverringerung des Hohlraumes spezifischen makroskopischen (schlingenförmigen, vernetzten) Aufbau besitzt. Die Muskelzüge der Herzkammern ziehen oberflächlich (subepikardial) zur Herzspitze und schlagen am Herzwirbel (Vortex cordis) nach innen und ziehen als tiefe (subendokardiale) Muskelschicht zurück zum Herzskelett.

Feinbau der Herzmuskulatur

Obwohl die Struktur der Herzmuskulatur große Ähnlichkeit zur Skelettmuskulatur aufweist, hat sie auch Eigenschaften, die von der glatten Muskulatur bekannt sind: Sie hat beispielsweise mittelständige Zellkerne. Herzmuskelzellen (Kardiomyozyten) enthalten im Regelfall einen Kern pro Zelle, in seltenen Fällen zwei, das heißt, sie stellen nur unter funktionellen Gesichtspunkten ein Synzytium dar. Mit der Skelettmuskulatur gemeinsam hat die Herzmuskulatur ihren regelmäßigen Aufbau aus speziellen quergestreiften Muskelfasern und das System des schnellen Calcium-Ionen-Einstroms durch Dyaden (bei Skelettmuskulatur Triaden) von endständigen SR-Zisternen und T-Tubuli der Zellmembran. Dieser Aufbau ist für die Synchronisation der schnellen und kraftvollen Kontraktion unabdingbar und unterscheidet die Herz- und Skelettmuskulatur wesentlich von der glatten Muskulatur.

Besonderheiten sind die Verzweigung und die Verbindung der einzelnen Herzmuskelzellen (Kardiomyozyten) über Glanzstreifen (1914 von Viktor von Ebner-Rofenstein beschriebene Disci intercalares oder Disci intercalates; eng. intercalated disks), wohingegen Skelettmuskelvorläuferzellen während der Säugerembryonalentwicklung zu echten mehrkernigen Synzytien verschmelzen (und sich somit lange Muskelfasern ausbilden). Die Glanzstreifen enthalten zur Impulsübertragung Gap Junctions und zur Stabilisierung des Zellverbands und Kraftübertragung Desmosomen (Maculae adhaerentes) und Adhärenzkontakte (Fasciae adhaerentes). Neue molekulare Untersuchungen der Glanzstreifen zeigen, dass typische desmosomale und Fascia-adhaerens-Proteine (im Gegensatz zu deren jeweiligen Lokalisationen in Epithelien) zwischen den Säuger-Herzmuskelzellen nicht getrennt auftreten und somit herzspezifische Adhärenzverbindungen eines komplexen Mischtyps (Area composita) vorherrschen. Die Intermediärfilamente des Cytoskeletts, die an diese Zell-Zell-Verbindungen anknüpfen, bestehen hierbei hauptsächlich aus Desmin. Histologisch zeigen sich zudem ein gering ausgebildetes sarkoplasmatisches Retikulum sowie kleinere Zisternen als in Skelettmuskelzellen. Man spricht in diesem Zusammenhang auch von „Dyade“.

Das Herz als künftiges Willkürorgan

Nach Rudolf Steiner ist die Herzmuskulatur bereits heute dazu veranlagt, künftig ein Willkürorgan zu werden. So sagt er über das Herz:

„Es ist dasjenige Organ, welches mit dem Blutkreislauf in innigem Zusammenhange steht. Nun glaubt die Wissenschaft, daß das Herz eine Art von Pumpe ist. Das ist eine groteske phantastische Vorstellung. Niemals hat der Okkultismus eine solch phantastische Behauptung aufgestellt wie der heutige Materialismus. Das, was die bewegende Kraft des Blutes ist, sind die Gefühle der Seele. Die Seele treibt das Blut, und das Herz bewegt sich, weil es vom Blute getrieben wird. Also genau das Umgekehrte ist wahr von dem, was die materialistische Wissenschaft sagt. Nur kann der Mensch sein Herz heute noch nicht willkürlich leiten; wenn er Angst hat, schlägt es schneller, weil das Gefühl auf das Blut wirkt und dieses die Bewegung des Herzens beschleunigt. Aber das, was der Mensch heute unwillkürlich erleidet, wird er später auf höherer Stufe der Entwickelung in der Gewalt haben. Er wird später sein Blut willkürlich treiben und sein Herz bewegen wie heute die Handmuskeln. Das Herz mit seiner eigentümlichen Konstruktion ist für die heutige Wissenschaft eine Crux, ein Kreuz. Es besitzt quergestreifte Muskelfasern, die sonst nur bei willkürlichen Muskeln gefunden werden. Warum? Weil das Herz heute noch nicht am Ende seiner Entwickelung angelangt, sondern ein Zukunftsorgan ist, weil es ein willkürlicher Muskel werden wird. Daher zeigt es heute schon die Anlage dazu in seinem Bau.

So verändert alles, was in der Seele des Menschen vorgeht, den Bau des menschlichen Organismus.“ (Lit.:GA 99, S. 147f)

Steuerung

Spezialisierte Herzmuskelzellen, die spontan selbst Aktionspotentiale auslösen können, übernehmen die Grundsteuerung der Herzaktion. Sie werden als Erregungsbildungssystem bezeichnet. Auch die Weiterleitung des Impulses auf die eigentliche Arbeitsmuskulatur erfolgt mittels Gap Junctions über spezialisierte Herzmuskelfasern und nicht über Nervenfasern. Die Anpassung der Herzmuskeltätigkeit an kurzfristige Blutdruckschwankungen erfolgt über den Frank-Starling-Mechanismus in der Herzmuskulatur selbst, die Anpassung an wechselnde körperliche Aktivitäten wird über das Kreislaufzentrum im Stammhirn und das vegetative Nervensystem gesteuert und unterliegt somit ebenfalls nicht dem Willen des Individuums.

Herzmuskel des Menschen

Die Herzmuskelzellen der Herzkammern des menschlichen Herzens sind 10–25 µm dick und 50–100 µm lang. Die Anzahl der Herzmuskelzellen der linken Herzkammer, welche die Hauptpumpleistung erbringt, wird anfänglich auf 6 Milliarden Zellen geschätzt.[1] Im Laufe des Lebens nimmt die Anzahl spontan und kontinuierlich ab und wird bei älteren Menschen mit 2–3 Milliarden Zellen angegeben.

Siehe auch

Literatur

  • Carola M. Borrmann, Christine Grund, Cäcilia Kuhn, Ilse Hofmann, Sebastian Pieperhoff, Werner W. Franke: The area composita of adhering junctions connecting heart muscle cells of vertebrates. II. Colocalizations of desmosomal and fascia adhaerens molecules in the intercalated disk. In: European Journal of Cell Biology. Bd. 85, Nr. 6, 2006, S. 469–485, doi:10.1016/j.ejcb.2006.02.009.
  • Werner W. Franke, Carola M. Borrmann, Christine Grund, Sebastian Pieperhoff: The area composita of adhering junctions connecting heart muscle cells of vertebrates. I. Molecular definition in intercalated disks of cardiomyocytes by immunoelectron microscopy of desmosomal proteins. In: European Journal of Cell Biology. Bd. 85, Nr. 2, 2006, S. 69–82, doi:10.1016/j.ejcb.2005.11.003.
  • Steven Goossens, Barbara Janssens, Stefan Bonné, Riet De Rycke, Filip Braet, Jolanda van Hengel, Frans van Roy: A unique and specific interaction between αT-catenin and plakophilin-2 in the area composita, the mixed-type junctional structure of cardiac intercalated discs. In: Journal of Cell Science. Bd. 120, Nr. 12, 2007, S. 2126–2136, doi:10.1242/jcs.004713.
  • Arnold M. Katz: Physiology of the Heart. 4. Auflage. Lippincott Williams & Wilkins, Philadelphia PA u. a. 2006, ISBN 0-7817-5501-8.
  • Sebastian Pieperhoff, Werner W. Franke: The area composita of adhering junctions connecting heart muscle cells of vertebrates – IV: Coalescence and amalgamation of desmosomal and adhaerens junction components – Late processes in mammalian heart development. In: European Journal of Cell Biology. Bd. 86, Nr. 7, 2007, S. 377–391, doi:10.1016/j.ejcb.2007.04.001.
  • Sebastian Pieperhoff, Werner W. Franke: The area composita of adhering junctions connecting heart muscle cells of vertebrates.: VI. Different precursor structures in non-mammalian species. In: European Journal of Cell Biology. Bd. 87, Nr. 7, 2008, S. 413–430, doi:10.1016/j.ejcb.2008.02.005.
  • Tatsuo Shimada, Hiroaki Kawazato, Aiko Yasuda, Noriaki Ono, Kana Sueda: Cytoarchitecture and intercalated disks of the working myocardium and the conduction system in the mammalian heart. In: The Anatomical Record. Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology. Bd. 280, Nr. 2, 2004, S. 940–951, doi:10.1002/ar.a.20109.
  • Jens Waschke: The desmosome and pemphigus. In: Histochemistry and Cell Biology. Bd. 130, Nr. 1, 2008, S. 21–54, doi:10.1007/s00418-008-0420-0.
  • Rudolf Steiner: Die Theosophie des Rosenkreuzers, GA 99 (1985), ISBN 3-7274-0990-8 pdf pdf(2) html mobi epub archive.org English: rsarchive.org
Literaturangaben zum Werk Rudolf Steiners folgen, wenn nicht anders angegeben, der Rudolf Steiner Gesamtausgabe (GA), Rudolf Steiner Verlag, Dornach/Schweiz Email: verlag@steinerverlag.com URL: www.steinerverlag.com.
Freie Werkausgaben gibt es auf steiner.wiki, bdn-steiner.ru, archive.org und im Rudolf Steiner Online Archiv.
Eine textkritische Ausgabe grundlegender Schriften Rudolf Steiners bietet die Kritische Ausgabe (SKA) (Hrsg. Christian Clement): steinerkritischeausgabe.com
Die Rudolf Steiner Ausgaben basieren auf Klartextnachschriften, die dem gesprochenen Wort Rudolf Steiners so nah wie möglich kommen.
Hilfreiche Werkzeuge zur Orientierung in Steiners Gesamtwerk sind Christian Karls kostenlos online verfügbares Handbuch zum Werk Rudolf Steiners und Urs Schwendeners Nachschlagewerk Anthroposophie unter weitestgehender Verwendung des Originalwortlautes Rudolf Steiners.

Weblinks

Einzelnachweise

  1. Lionel H. Opie: Heart Physiology. From Cell to Circulation. 4. Auflage. Lippincott Williams & Wilkins, Philadelphia PA u. a. 2004, ISBN 0-7817-4278-1.


Dieser Artikel basiert (teilweise) auf dem Artikel Herzmuskel aus der freien Enzyklopädie Wikipedia und steht unter der Lizenz Creative Commons Attribution/Share Alike. In Wikipedia ist eine Liste der Autoren verfügbar.