Tanach und Welle: Unterschied zwischen den Seiten

Aus AnthroWiki
(Unterschied zwischen Seiten)
imported>Odyssee
Keine Bearbeitungszusammenfassung
 
imported>Odyssee
 
Zeile 1: Zeile 1:
{{Linkbox Tanach}}
{{Doppeltes Bild|rechts|EM-Wave_noGIF.svg|200|EM-Wave.gif|200|Linear polarisierte elektromagnetische Welle im Vakuum. Die monochromatische Welle mit der [[Wikipedia:Wellenlänge|Wellenlänge]] <math>\lambda</math> breitet sich in ''x''-Richtung aus, die [[Wikipedia:elektrische Feldstärke|elektrische Feldstärke]] <math>\vec E</math> (in blau) und die [[Wikipedia:magnetische Flussdichte|magnetische Flussdichte]] <math>\vec B</math> (in rot) stehen zueinander und zur Ausbreitungsrichtung im rechten Winkel.}}
[[Datei:Entire Tanakh scroll set.png|mini|left|Vollständiger Schriftrollensatz des Tanach]]
Der '''Tanach''' oder '''Tenach''' ({{heS|תנ״ך|}}), kurz gefasst in das [[Wikipedia:Akronym|Akronym]] {{heS|תנך|TNK}}, ist die [[hebräisch]]e „[[Bibel]]“. Sie besteht aus den drei Teilen [[Tora]] ‚Weisung‘, [[Nevi’im]] ‚Propheten‘ und [[Wikipedia:Ketuvim|Ketuvim]] ‚Schriften‘ und umfasst insgesamt 24 in [[Hebräische Sprache|hebräischer Sprache]] verfasste Bücher, von denen zwei auch längere [[Wikipedia:Aramäische Sprachen|aramäische]] Textpassagen enthalten. Das [[Christentum]] hat alle 24 Bücher, teilweise in anderer Reihung, in den [[Bibel]]kanon des [[Wikipedia:Altes Testament|Alten Testaments]] übernommen.


Da sich die [[hebräische Schrift]] nicht für die sonst im [[Wikipedia:Alter Orient|alten Orient]] weithin gebräuchlichen [[Wikipedia:Tontafel|Tontafel]]n eignete, wurden die Texte üblicherweise auf handgefertigten [[Wikipedia:Papyrus|Papyrus]]-, selten auch auf [[Wikipedia:Leder|Leder]]-Rollen festgehalten, die mit [[Wikipedia:Tinte|Tinte]] aus rußigem [[Wikipedia:Olivenöl|Olivenöl]] oder [[Wikipedia:Eisengallustinte|Eisengallustinte]] beschrieben wurden.  
Eine '''Welle''' ist aus [[Physik|physikalischer Sicht]] eine sich räumlich mit einer bestimmten [[Geschwindigkeit]] ausbreitende Veränderung (Störung) bzw. [[Schwingung]] einer [[ort]]s- und [[zeit]]abhängigen [[Physikalische Größe|physikalischen Größe]]. Dabei wird keine [[Materie]], wohl aber [[Energie]] transportiert. [[Mechanik|Mechanische]] Wellen - wie beispielsweise Schallwellen - bedürfen für ihre Ausbreitung eines [[Materie|materiellen]] Trägers (bei Schallwellen z.B. [[Luft]], [[Wasser]] oder auch [[Festkörper]]), während sich etwa [[elektromagnetische Welle]]n auch im [[Vakuum]] ausbreiten können.


Die älteste aus dem [[Wikipedia:7. Jahrhundert v. Chr.|7. Jahrhundert v. Chr.]] in den [[Wikipedia:Silberrollen von Ketef Hinnom|Silberrollen von Ketef Hinnom]] erhaltenen Texte des Tanach sind der [[Wikipedia:Aaronitischer Segen|Aaronitische Segen]] und ein weiterer Segen. Die ältesten bekannten zusammenhängenden Bibeltexte sind die etwa 250 v. bis 100 n. Chr. entstandenen [[Wikipedia:Schriftrollen vom Toten Meer|Schriftrollen vom Toten Meer]], die die meisten Bücher der ersten beiden Hauptteile enthalten. Zu den ältesten sicher datierbaren Fragmenten gehören [[Wikipedia:Samuel-Fragmente vom Toten Meer|4Q52]] (4QSam<sup>b</sup>) und [[Wikipedia:4Q17|4Q17]] (4QExod-Lev). Ab dem [[Wikipedia:1. Jahrhundert|1. Jahrhundert]] löste allmählich [[Wikipedia:Pergament|Pergament]] den Papyrus ab,  wodurch mehrere umfangreiche Schriftrollen zu einem „Kodex“ gebündelt werden konnten.
{{Doppeltes Bild|rechts|Pricna vlna.gif|200px|Podelna vlna.gif|200px|Transversalwelle|Longitudinalwelle}}


Im [[Gottesdienst]] des [[Judentum]]s wird der Tanach auch als ''Miqra'' {{HeS|מִקְרָא&lrm;}} („Lesung“) oder nach seinem wichtigsten ersten Hauptteil auch als ''Tora'' bezeichnet.
== Grundlagen ==
 
Fällt die [[Schwingung]]srichtung mit der Ausbreitungsrichtung zusammen, spricht man von '''Logitudinalwellen''', während bei '''Transversalwellen''' die Schwingung quer zur Ausbreitungsrichtung erfolgt. Dreht sich dabei die Schwingungsebene um die Ausbreitungsachse, spricht man von '''Torsionswellen'''. ''Schallwellen'' breiten sich in [[Flüssigkeit]]en und [[Gas]]en als Longitudinalwellen aus, in Festkörpern hingegen ähnlich den ''elektromagnetischen Wellen'' auch als Transversalwellen.
 
Die '''Wellenlänge''' ''<math>\lambda</math>'' ist der kleinste Abstand zweier Punkte in gleicher [[Phasenwinkel|Phase]] und umgekehrt proportional zur [[Frequenz]] <math>\nu</math>, mit der '''Phasengeschwindigkeit''' <math>c</math> als Proportionalitätsfaktor. Ihr Kehrwert ist die '''Wellenzahl''' <math>\tilde \nu</math>, die die Anzahl der Wellenlängen pro Längeneinheit angibt. Für ''monochromatische Wellen'' ist die '''Ausbreitungsgeschwindigkeit''' der Welle mit der ''Phasengeschwindigkeit'' identisch.
 
:<math>\lambda=\frac c\nu\</math> bzw. <math>\tilde \nu = \frac{1}{\lambda} =  \frac{\nu}{c}</math>
 
Für ''elektromagnetische Wellen'' ist <math>c</math> gleich der [[Lichtgeschwindigkeit]], d.h. der endliche Ausbreitungsgeschwindigkeit des [[Licht]]s im Vakuum. Nach den [[Maxwell-Gleichungen|Maxwellschen Gleichungen]] der [[Elektrodynamik]] ist sie unabhängig von der Frequenz und der Bewegung der [[Lichtquelle]] stets konstant. Ihr Wert beträgt <math>c=299\,792\,458\;\mathrm{m/s}</math>. Aus der Konstanz der Vakuumlichtgeschwindigkeit folgen die 1905 von [[Albert Einstein]] veröffentlichten Gesetzmäßigkeiten der [[Spezielle Relativitätstheorie|speziellen Relativitätstheorie]].
 
Eine '''monochromatische Welle''', d.h. eine Welle mit nur einer einzigen Frequenz, kann als '''harmonische Welle''' durch die [[Funktion (Mathematik)|Funktion]] <math>A \cdot \cos(\omega t - \phi)</math> beschrieben werden. <math>A</math> ist dabei die [[Amplitude]], <math>\omega = 2\pi\nu</math> die [[Kreisfrequenz]], <math>t</math> die Zeit und <math>\phi</math> die [[Schwingung|Anfangsphase]] der Welle.
 
== Stehende Welle und Wanderwelle ==
[[Datei:Wanderwelle-Animation.gif|miniatur|hochkant=2|Eine fortschreitende Wanderwelle mit der Wellenlänge <math>\lambda</math>]]
[[Datei:Standing wave 2.gif|mini|Eine stehende Welle (schwarz) als Überlagerung zweier gegenläufiger Wanderwellen (rot und blau). Die Knoten der stehenden Welle befinden sich an den roten Punkten.]]
[[Datei:Wave packet (no dispersion).gif|miniatur|Ausbreitung eines eindimensionalen Wellenpakets ohne Dispersion.]]
[[Datei:Plane wave wavefronts 3D.svg|mini|Die Ebenen gleicher Phase einer ebenen Welle im dreidimensionalen Raum.]]
 
Eine '''stehende Welle''' ist dadurch gekennzeichnet, dass ihre Auslenkung - im Gegensatz zu einer fortschreitenden '''Wanderwelle''' - an bestimmten Stellen, den '''Wellenknoten''', stets Null bleibt, während sie an anderen, den '''Wellenbäuchen''', weit ausschwingt.
 
== Wellenpaket ==
 
Ein '''Wellenpaket''' ist eine [[Raum|räumlich]] oder [[zeit]]lich begrenzte Welle. [[Mathematik|Mathematisch]] kann sie durch Überlagerung (''Superposition'') mehrerer '''harmonischer Wellen''' ('''Sinuswellen''') erzeugt werden (→ [[Fourier-Synthese]]) bzw. durch [[Fourier-Analyse]] bzw. experimentell durch [[Spektralanalyse]] wieder in ihre Bestandteile zerlegt werden.
 
Ist die ''Phasengeschwindigkeit'' der Welle von der [[Frequenz]] abhängig, kommt es zur [[Dispersion|Dispersion]] durch die das Wellenpaket mit fortschreitender Zeit zerfließt.
 
== Ebene Welle ==
 
Eine '''ebene Welle''' breitet sich so im [[dreidimensional]]en [[Raum]] aus, dass ihre '''Wellenfronten''', d.h. die [[Fläche (Mathematik)|Flächen]] mit gleichen Phasenwinkel, senkrecht zur Ausbreitungsrichtung stehen.
 
== Wellengleichung ==
 
Mathematisch betrachtet ist eine Welle <math>u(x_1, ..., x_i, t)</math> im <math>n</math>-dimensionalen [[Raum]] eine Lösung der allgemeinen '''Wellengleichung'''.
 
Für die ''homogene Wellengleichung'' gilt:
 
:<math> \frac 1 {c^2} \frac{\partial^2 u}{\partial t^{\prime 2}}-\sum_{i=1}^{n} \frac{\partial^2 u}{\partial x_i^2} = 0</math> bzw. <math>\frac 1 {c^2} \frac{\partial^2 u}{\partial t^{\prime 2}}-\Delta u = 0</math> mit dem [[Wikipedia:Laplace-Operator|Laplace-Operator]] <math>\Delta= \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2} </math> bzw. kurz <math> \Box u = 0</math>
mit dem [[Wikipedia:d’Alembert-Operator|d’Alembert-Operator]] (Box) <math>\Box = \frac{\partial ^2}{\partial t^2} - \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}</math>
 
Mit der Inhomogenität oder Quelle <math>v(x_1, ..., x_i, t)</math> von <math>u</math> ergibt sich entsprechend für die ''inhomogene Wellengleichung'': <math>\Box u = v</math>
 
Für eine eindimensionalen homogene Welle folgt daraus die vereinfachte Form:
 
:<math>\frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0</math>
 
Mittels [[Fourier-Transformation]] lässt sich die allgemeine Lösung der Wellengleichung mit der Kreisfrequenz <math>\omega = 2\pi\nu = kc</math> als [[Wikipedia:Linearkombination|Linearkombination]] komplexer [[Exponentialfunktion]]en bzw. [[Sinusfunktion]]en folgender Form darstellen:
 
:<math>A\mathrm{e}^{\mathrm{i}(\mathbf k \mathbf x -\omega t)}</math> bzw. <math>A\sin(\mathbf k \mathbf x -\omega t + \varphi)</math>


== Siehe auch ==
== Siehe auch ==


* {{WikipediaDE|Tanach}}
* {{WikipediaDE|Welle}}


== Weblinks ==
== Weblinks ==
{{Commonscat|Tanakh|Tanach}}
{{Commonscat|Waves|Wellen}}
* [http://www.hagalil.com/judentum/torah/mendelssohn/tora.htm Wöchentliche Torah-Lesung]
* [http://www.chemie.de/lexikon/Wellengleichung.html Wellengleichung] auf [http://www.chemie.de chemie.de]
* [http://www.bible-researcher.com/links08.html bible-researcher.com: ''Hebrew Old Testament. Links updated May 2009. Texts Online'']
* [http://www.bibelwissenschaft.de/online-bibeln/biblia-hebraica-stuttgartensia-bhs/lesen-im-bibeltext/ Biblia Hebraica Stuttgartensia, hebräischer Text], Seite der deutschen Bibelgesellschaft
* {{Webarchiv | url=http://itanakh.org/ | wayback=20150316191823 | text=iTanakh: Onlinetexte zur Erforschung der hebräischen Bibel, Pepperdine University, Malibu, Kalifornien}} (PDF; englisch)
* [http://www.chabad.org/library/article.asp?AID=63255 The Judaica Press Complete Tanach with Rashi] (englisch, mit zuschaltbaren Kommentaren von [[Wikipedia:Raschi|Raschi]])
* [http://www.juedische-bibel.de/ Eine jüdische Bibel] (deutsche Übertragung der Tora in leichtverständliches Deutsch)


[[Kategorie:Bibel]] [[Kategorie:Judentum]]
[[Kategorie:Physik]]

Version vom 22. April 2018, 12:49 Uhr

Linear polarisierte elektromagnetische Welle im Vakuum. Die monochromatische Welle mit der Wellenlänge '"`UNIQ--postMath-00000001-QINU`"' breitet sich in x-Richtung aus, die elektrische Feldstärke '"`UNIQ--postMath-00000002-QINU`"' (in blau) und die magnetische Flussdichte '"`UNIQ--postMath-00000003-QINU`"' (in rot) stehen zueinander und zur Ausbreitungsrichtung im rechten Winkel. Linear polarisierte elektromagnetische Welle im Vakuum. Die monochromatische Welle mit der Wellenlänge '"`UNIQ--postMath-00000001-QINU`"' breitet sich in x-Richtung aus, die elektrische Feldstärke '"`UNIQ--postMath-00000002-QINU`"' (in blau) und die magnetische Flussdichte '"`UNIQ--postMath-00000003-QINU`"' (in rot) stehen zueinander und zur Ausbreitungsrichtung im rechten Winkel.
Linear polarisierte elektromagnetische Welle im Vakuum. Die monochromatische Welle mit der Wellenlänge breitet sich in x-Richtung aus, die elektrische Feldstärke (in blau) und die magnetische Flussdichte (in rot) stehen zueinander und zur Ausbreitungsrichtung im rechten Winkel.

Eine Welle ist aus physikalischer Sicht eine sich räumlich mit einer bestimmten Geschwindigkeit ausbreitende Veränderung (Störung) bzw. Schwingung einer orts- und zeitabhängigen physikalischen Größe. Dabei wird keine Materie, wohl aber Energie transportiert. Mechanische Wellen - wie beispielsweise Schallwellen - bedürfen für ihre Ausbreitung eines materiellen Trägers (bei Schallwellen z.B. Luft, Wasser oder auch Festkörper), während sich etwa elektromagnetische Wellen auch im Vakuum ausbreiten können.

Transversalwelle Longitudinalwelle
Transversalwelle
Longitudinalwelle

Grundlagen

Fällt die Schwingungsrichtung mit der Ausbreitungsrichtung zusammen, spricht man von Logitudinalwellen, während bei Transversalwellen die Schwingung quer zur Ausbreitungsrichtung erfolgt. Dreht sich dabei die Schwingungsebene um die Ausbreitungsachse, spricht man von Torsionswellen. Schallwellen breiten sich in Flüssigkeiten und Gasen als Longitudinalwellen aus, in Festkörpern hingegen ähnlich den elektromagnetischen Wellen auch als Transversalwellen.

Die Wellenlänge ist der kleinste Abstand zweier Punkte in gleicher Phase und umgekehrt proportional zur Frequenz , mit der Phasengeschwindigkeit als Proportionalitätsfaktor. Ihr Kehrwert ist die Wellenzahl , die die Anzahl der Wellenlängen pro Längeneinheit angibt. Für monochromatische Wellen ist die Ausbreitungsgeschwindigkeit der Welle mit der Phasengeschwindigkeit identisch.

Fehler beim Parsen (Syntaxfehler): {\displaystyle \lambda=\frac c\nu\} bzw.

Für elektromagnetische Wellen ist gleich der Lichtgeschwindigkeit, d.h. der endliche Ausbreitungsgeschwindigkeit des Lichts im Vakuum. Nach den Maxwellschen Gleichungen der Elektrodynamik ist sie unabhängig von der Frequenz und der Bewegung der Lichtquelle stets konstant. Ihr Wert beträgt . Aus der Konstanz der Vakuumlichtgeschwindigkeit folgen die 1905 von Albert Einstein veröffentlichten Gesetzmäßigkeiten der speziellen Relativitätstheorie.

Eine monochromatische Welle, d.h. eine Welle mit nur einer einzigen Frequenz, kann als harmonische Welle durch die Funktion beschrieben werden. ist dabei die Amplitude, die Kreisfrequenz, die Zeit und die Anfangsphase der Welle.

Stehende Welle und Wanderwelle

Eine fortschreitende Wanderwelle mit der Wellenlänge
Eine stehende Welle (schwarz) als Überlagerung zweier gegenläufiger Wanderwellen (rot und blau). Die Knoten der stehenden Welle befinden sich an den roten Punkten.
Ausbreitung eines eindimensionalen Wellenpakets ohne Dispersion.
Die Ebenen gleicher Phase einer ebenen Welle im dreidimensionalen Raum.

Eine stehende Welle ist dadurch gekennzeichnet, dass ihre Auslenkung - im Gegensatz zu einer fortschreitenden Wanderwelle - an bestimmten Stellen, den Wellenknoten, stets Null bleibt, während sie an anderen, den Wellenbäuchen, weit ausschwingt.

Wellenpaket

Ein Wellenpaket ist eine räumlich oder zeitlich begrenzte Welle. Mathematisch kann sie durch Überlagerung (Superposition) mehrerer harmonischer Wellen (Sinuswellen) erzeugt werden (→ Fourier-Synthese) bzw. durch Fourier-Analyse bzw. experimentell durch Spektralanalyse wieder in ihre Bestandteile zerlegt werden.

Ist die Phasengeschwindigkeit der Welle von der Frequenz abhängig, kommt es zur Dispersion durch die das Wellenpaket mit fortschreitender Zeit zerfließt.

Ebene Welle

Eine ebene Welle breitet sich so im dreidimensionalen Raum aus, dass ihre Wellenfronten, d.h. die Flächen mit gleichen Phasenwinkel, senkrecht zur Ausbreitungsrichtung stehen.

Wellengleichung

Mathematisch betrachtet ist eine Welle im -dimensionalen Raum eine Lösung der allgemeinen Wellengleichung.

Für die homogene Wellengleichung gilt:

bzw. mit dem Laplace-Operator bzw. kurz

mit dem d’Alembert-Operator (Box)

Mit der Inhomogenität oder Quelle von ergibt sich entsprechend für die inhomogene Wellengleichung:

Für eine eindimensionalen homogene Welle folgt daraus die vereinfachte Form:

Mittels Fourier-Transformation lässt sich die allgemeine Lösung der Wellengleichung mit der Kreisfrequenz als Linearkombination komplexer Exponentialfunktionen bzw. Sinusfunktionen folgender Form darstellen:

bzw.

Siehe auch

Weblinks

Commons: Wellen - Weitere Bilder oder Audiodateien zum Thema