Kernfusion

Aus AnthroWiki
Version vom 14. Mai 2019, 02:01 Uhr von imported>Odyssee
Diagramm der Bindungsenergie pro Nukleon als Funktion der Massenzahl.
Schematischer Ablauf der Proton-Proton-I-Reaktionskette

Die Kernfusion (von lat. fusio „das Gießen, Schmelzen, der Guss“, aus fundere „schmelzen, gießen, strömen, fließen“) ist eine Kernreaktion, bei der zwei oder mehr Atomkerne zu einem oder mehreren neuen Kernen verschmelzen, wobei in der Regel auch subatomare Teilchen wie Protonen, Neutronen oder Neutrinos freigesetzt werden. Die Massendifferenz zwischen den Reaktanden und Produkten, der sogenannte Massendefekt, wird gemäß der bekannten Einsteinschen Formel in Form von Energie () freigesetzt. Um die starken Abstoßungskräfte der elektrisch positiv geladenen Kerne zu überwinden, ist eine große kinetische bzw. thermische Energie, d.h. eine hohe Temperatur notwendig. Wie das Diagramm der Bindungsenergie (Bild rechts) zeigt, laufen Fusionsprozesse nur bis zum Eisenisotop 56Fe exotherm, d.h. unter Energieabgabe ab. Sie können dadurch die für die Fusion nötigen hohen Temperaturen selbsttätig aufrechterhalten. Fusionsprozesse, bei denen schwerere Kerne gebildet werden, verlaufen hingegen endotherm, verbrauchen also Energie. Die erste überhaupt beobachtete Kernreaktion, die 1919 von Ernest Rutherford beschrieben wurde, war eine endotherme Fusionsreaktion. Dabei wurden Alphateilchen durch Stickstoff geschossen, was dahinter auf dem Zinksulfid-Schirm, der als Szintillator diente, auch Signale von Protonen ergab[1]:

Sterne erzeugen gewaltige Energiemengen durch Kernfusion, hauptsächlich durch das sog. Wasserstoffbrennen, bei dem in Summe 4 Wasserstoffkerne (Protonen) zu einem Heliumkern verschmolzen werden. Unsere Sonne erzeugt auf diese Art pro Sekunde aus 564 Millionen Tonnen Wasserstoff 560 Millionen Tonnen Helium; der Massendefekt von 4 Millionen Tonnen liefert dabei eine Energiemenge von knapp 3,85•1026 J pro Sekunde, die sog. Sonnenleuchtkraft L. Die wichtigste Fusionsreaktion, die rund 98 % der Sonnenleuchtkraft liefert, ist die dabei die Proton-Proton-Reaktion (p-p-Reaktion). De facto wird also in den Sternen Materie ätherisiert, d.h. in Wärme- und Lichtäther und wohl auch in höhere Ätherarten (Klangäther, Lebensäther) transformiert, während der Raum partiell von Materie freigesaugt wird.

Für die technische Nutzung der Kernfusion in Kernfusionsreaktoren, die sich derzeit noch im experimentellen Stadium befinden, ist die stellare p-p-Reaktion allerdings viel zu langsam. Selbst im heißen Kern der Sonne beträgt die mittlere Lebensdauer der Protonen bei rund 10 Millionen Jahren. Die Fusionsreaktoren nutzen daher die wesentlich schnellere, aber energetisch nicht so ergiebige Fusion von Deuterium (2H) und Tritium (3H):

Siehe auch

Einzelnachweise

  1.  E. Rutherford: Collision of α particles with light atoms. IV. An anomalous effect in nitrogen. In: Philosophical Magazine. 37, 1919, S. 581-587. (Veröffentlichungstext)