Quantenfeldtheorie und Michael Pauen: Unterschied zwischen den Seiten

Aus AnthroWiki
(Unterschied zwischen Seiten)
imported>Joachim Stiller
 
imported>Odyssee
(Die Seite wurde neu angelegt: „'''Michael Pauen''' (* 19. Februar 1956 in Wikipedia:Krefeld) ist ein deutscher Philosoph und Professor an der Wikipedia:Humboldt-Universit…“)
 
Zeile 1: Zeile 1:
Die '''Quantenfeldtheorie''' ('''QFT''') ist ein Gebiet der [[Theoretische Physik|theoretischen Physik]], in dem Prinzipien klassischer [[Feldtheorie (Physik)|Feldtheorien]] (zum Beispiel der [[Elektrodynamik|klassischen Elektrodynamik]]) und der [[Quantenmechanik]] zur Bildung einer erweiterten Theorie kombiniert werden. Sie geht über die Quantenmechanik hinaus, indem sie [[Teilchen]] und [[Feld (Physik)|Felder]] einheitlich beschreibt. Dabei werden nicht nur sog. [[Observable]]n (also beobachtbare Größen wie [[Energie]] oder [[Impuls]]) [[Quantisierung (Physik)|quantisiert]], sondern auch die [[Grundkräfte der Physik|wechselwirkenden]] (Teilchen-)Felder selbst; Felder und Observable werden also analog behandelt. Die Quantisierung der Felder bezeichnet man auch als [[Zweite Quantisierung]]. Diese berücksichtigt explizit die Entstehung und Vernichtung von Elementarteilchen ([[Paarbildung (Physik)|Paarerzeugung]], [[Annihilation]]).
'''Michael Pauen''' (* [[19. Februar]] [[1956]] in [[Wikipedia:Krefeld|Krefeld]]) ist ein deutscher [[Philosoph]] und Professor an der [[Wikipedia:Humboldt-Universität zu Berlin|Humboldt-Universität Berlin]].


Die Methoden der Quantenfeldtheorie kommen vor allem in der [[Teilchenphysik|Elementarteilchenphysik]] und in der [[Statistische Mechanik|statistischen Mechanik]] zur Anwendung. Man unterscheidet dabei zwischen ''relativistischen Quantenfeldtheorien'', die die [[spezielle Relativitätstheorie]] berücksichtigen und häufig in der Elementarteilchenphysik Anwendung finden, und ''nicht-relativistischen Quantenfeldtheorien'', die beispielsweise in der [[Festkörperphysik]] relevant sind.
== Werdegang ==
Die Hauptarbeitsgebiete von Michael Pauen sind die [[Philosophie des Geistes]] und die [[Kulturphilosophie]]. Er studierte in [[Wikipedia:Marburg|Marburg]], [[Wikipedia:Frankfurt am Main|Frankfurt am Main]] und [[Wikipedia:Hamburg|Hamburg]] und war Visiting Professor am Institute for Advanced Study<!-- ? in the Humanities?--> in Amherst, [[Wikipedia:Massachusetts|Massachusetts]], Fellow an der [[Wikipedia:Cornell University|Cornell University]] und am [[Wikipedia:Hanse-Wissenschaftskolleg|Hanse-Wissenschaftskolleg]] in [[Wikipedia:Delmenhorst|Delmenhorst]]. 1997 erhielt er den [[Wikipedia:Ernst-Bloch-Preis|Ernst-Bloch-Förderpreis]].  


Die Objekte und Methoden der QFT sind physikalisch motiviert, auch wenn viele Teilbereiche der Mathematik zum Einsatz kommen. Die [[Axiomatische Quantenfeldtheorie]] versucht dabei, Grundlagen und Konzepte in einen mathematisch rigorosen Rahmen zu fassen.
In der Philosophie des Geistes hat sich Pauen insbesondere durch eine Argumentation für die [[Identitätstheorie (Philosophie des Geistes)|Identitätstheorie]] hervorgetan. Diese läuft auf die Gleichsetzung von mentalen und neuronalen Zuständen hinaus. Die Identitätstheorie wurde in den 50er Jahren durch [[Wikipedia:Ullin Place|Ullin Place]] und [[Wikipedia:John Jamieson Carswell Smart|John Smart]] entwickelt. Sie wurde schnell unpopulär, da umstritten ist, ob sie mit der [[multiple Realisierung|multiplen Realisierung]] vereinbar ist.  


== Motivation ==
Pauen vertritt eine [[Kompatibilismus und Inkompatibilismus|kompatibilistische]] Position in der [[Freiheit]]sdebatte. Er behauptet also, dass sich Freiheit und [[Determinismus]] nicht ausschließen. Seine Position ähnelt dabei den Thesen  von [[Ansgar Beckermann]], [[Peter Bieri]] und [[Daniel Dennett]].
Die Quantenfeldtheorie ist eine Weiterentwicklung der [[Quantenphysik]] über die [[Quantenmechanik]] hinaus. Die vorher existierenden Quantentheorien waren ihrem Aufbau nach Theorien für Systeme mit wenigen Teilchen. Um Systeme mit vielen Teilchen zu beschreiben, ist zwar prinzipiell keine neue Theorie nötig, doch die Beschreibung von bspw. 10<sup>23</sup> Teilchen in einem Festkörper ist mit den Methoden der Quantenmechanik ohne Näherungen aufgrund des hohen Rechenaufwands rein technisch unmöglich.


Ein fundamentales Problem der Quantenmechanik ist ihre Unfähigkeit, Systeme mit variierender Teilchenzahl zu beschreiben. Die ersten Versuche einer Quantisierung des elektromagnetischen Feldes zielten darauf ab, die Emission von Photonen durch ein Atom zu beschreiben. Außerdem gibt es nach der relativistischen [[Klein-Gordon-Gleichung]] und der [[Dirac-Gleichung]] die oben erwähnten Antiteilchen-Lösungen. Bei ausreichender Energie ist es dann möglich, Teilchen-Antiteilchen-Paare zu erzeugen, was ein System mit konstanter Teilchenzahl unmöglich macht.
Pauens kulturphilosophische Schriften setzen sich insbesondere mit der Tradition des [[Kultur]]pessimismus auseinander.
 
Zur Lösung dieser Probleme behandelt man das Objekt, das in der Quantenmechanik als Wellenfunktion eines Teilchens interpretiert wurde, als ''Quantenfeld''. Das heißt, dass man es ähnlich behandelt wie eine [[Observable]] der Quantenmechanik. Dies löst nicht nur die zuvor genannten Probleme, sondern beseitigt auch Inkonsistenzen der klassischen Elektrodynamik, wie zum Beispiel die [[Strahlungsrückwirkung]]. Außerdem erhält man Begründungen für das [[Pauli-Prinzip]] und das allgemeinere [[Spin-Statistik-Theorem]].
 
== Grundlagen ==
Die Quantenfeldtheorien sind ursprünglich als relativistische [[Streutheorie]]n entwickelt worden. In gebundenen Systemen sind die Teilchenenergien im Allgemeinen deutlich kleiner als die Massenenergien ''mc<sup>2</sup>''. Daher ist es in solchen Fällen meist ausreichend genau, in der nichtrelativistischen Quantenmechanik mit der [[Störungstheorie (Quantenmechanik)|Störungstheorie]] zu arbeiten. Bei Kollisionen zwischen kleinen Teilchen können jedoch sehr viel höhere Energien auftreten, so dass relativistische Effekte berücksichtigt werden müssen.
 
Im folgenden Abschnitt wird erklärt, welche Schritte zur Entwicklung einer relativistischen Streutheorie nötig sind. Zunächst wird dazu die Lagrangedichte aufgestellt, dann werden die Felder quantisiert. Zuletzt wird mit den quantisierten Feldern eine Streutheorie beschrieben und ein dabei auftretendes Problem durch die [[Renormierung]] gelöst.
 
=== Lagrangedichte ===
Der erste Schritt zu einer Quantenfeldtheorie besteht darin, [[Lagrange-Dichte|Lagrangedichten]] für die Quantenfelder zu finden. Diese Lagrangedichten müssen als [[Lagrange-Formalismus#Erweiterung auf Felder|Euler-Lagrange-Gleichung]] die im Allgemeinen bekannte Differentialgleichung für das Feld liefern. Das sind für ein [[Skalarfeld]] die [[Klein-Gordon-Gleichung]], für ein [[Spinor]]feld die [[Dirac-Gleichung]] und für das [[Photon]] die [[Maxwellsche Gleichungen#Kovariante Formulierung der Maxwellgleichungen|Maxwellgleichungen]].
 
Im Folgenden wird immer die [[Vierervektor|4er-(Raumzeit)-Vektoren]]-Schreibweise verwendet. Dabei werden die üblichen Kurzschreibweisen benutzt, nämlich die Kurzschreibweise <math>\textstyle \partial_{\mu} = \frac{\partial}{\partial x^{\mu}}</math> für  [[Differential (Mathematik)|Differentiale]] und die [[Einsteinsche Summenkonvention]], die besagt, dass über einen oben und einen unten stehenden Index (von 0 bis 3) summiert wird. Im verwendeten Einheitensystem gilt: <math>c = \hbar = \varepsilon_0 = 1</math>.
 
{| align="center"
|
{| class="wikitable" align="top"
|+ Lagrangedichten verschiedener Felder
|- class="hintergrundfarbe6"
! Feld
! Feldgleichung
! Lagrangedichte
|-
|Skalar <math>\phi\ </math> (Spin = 0)
|<math>0 = (\square + m^2) \phi</math>
|<math>\mathcal{L} = (\partial_{\mu} \phi^{\dagger})(\partial^{\,\mu} \phi) - m^2 \phi^{\dagger} \phi</math>
|-
|Spinor <math>\psi\ </math> (Spin = 1/2)
|<math>0 = (i \gamma^{\mu} \partial_{\mu} - m) \psi</math>
|<math>\mathcal{L} = \tfrac{i}{2} \left( \overline{\psi} \gamma^{\mu} (\partial_{\mu} \psi) - (\partial_{\mu} \overline{\psi}) \gamma^{\mu} \psi \right) - m \overline{\psi} \psi</math>
|-
|Photon <math>A^{\mu}\ </math> (Spin 1)
|<math>0 = \partial_{\mu} F^{\mu\nu} = \square A^{\nu} - \partial^{\nu} (\partial_{\mu} A^{\mu})</math>
|<math>\mathcal{L} = - \tfrac{1}{4} F_{\mu\nu} F^{\mu\nu} = - \tfrac{1}{4} (\partial_{\mu} A_{\nu}- \partial_{\nu} A_{\mu})(\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu})</math>
|}
|}
Dabei bezeichnet <math>\gamma^{\mu}</math> die [[Dirac-Matrizen]]. <math>\overline{\psi} = \psi^{\dagger} \gamma^0</math> ist der sogenannte adjungierte Spinor. <math>F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}</math> sind die Komponenten des [[Elektromagnetischer Feldstärketensor|Feldstärketensors]]. Dabei wurden hier die [[Maxwellsche Gleichungen#Kovariante Formulierung der Maxwell-Gleichungen|Maxwellgleichungen in kovarianter Formulierung]] ohne die Quellenterme (Ladungs- und Stromdichte) benutzt.
 
Die oben aufgeführten Lagrangedichten beschreiben freie Felder, die nicht wechselwirken. Sie ergeben die Bewegungsgleichungen für freie Felder. Für Wechselwirkungen der Felder untereinander müssen den Lagrangedichten zusätzliche Terme hinzugefügt werden. Dabei ist auf folgende Punkte zu achten:
# Die hinzugefügten Terme müssen alle [[Skalar (Mathematik)|skalar]] sein. Das bedeutet, dass sie [[Invariante (Mathematik)|invariant]] unter [[Poincaré-Gruppe|Poincaré-Transformationen]] sind.
# Die hinzugefügten Terme müssen die Dimension (Länge)<sup>−4</sup> haben, da die Lagrangedichte in der skalaren Wirkung über die Raumzeit integriert wird. Dies lässt sich gegebenenfalls durch einen konstanten Faktor mit passender Dimension erreichen. Solche Faktoren nennt man [[Kopplungskonstante]]n.
# Bei Wechselwirkungen von [[Eichtheorie|Eichfeldern]] wie dem Photon mit anderen Feldern muss die Lagrangedichte eichkovariant sein. Das heißt, die Form der Lagrangedichte unter [[Eichtransformation]]en darf sich nicht ändern.
 
Erlaubte Terme sind zum Beispiel <math>k (\overline{\psi}\psi)^n(\phi^{\dagger}\phi)^m\,,</math> wobei ''m'' und ''n''  natürliche Zahlen sind (einschließlich Null) und ''k'' die Kopplungskonstante ist. Wechselwirkungen mit dem Photon werden meist durch die [[kovariante Ableitung]] (<math>\partial_{\mu} \rightarrow \partial_{\mu} + i e A_{\mu}</math>) in der Lagrangedichte für das freie Feld realisiert. Dabei ist die [[elektrische Ladung]] ''e'' des Elektrons hier zugleich die Kopplungskonstante des elektromagnetischen Feldes.
 
=== Feldquantisierung ===
Bisher wurde noch keine Aussage über die Eigenschaften der Felder gemacht. Bei starken Feldern mit einer großen Zahl von Bosonen-Anregungen können diese halbklassisch behandelt werden, im Allgemeinen muss man aber zunächst einen Mechanismus entwickeln, um die Auswirkungen der Quantennatur der Felder zu beschreiben. Die Entwicklung eines solchen Mechanismus bezeichnet man als ''Feldquantisierung'' und sie ist der erste Schritt, um das Verhalten der Felder berechenbar zu machen. Es gibt dabei zwei verschiedene Formalismen, die unterschiedliches Vorgehen beinhalten.
 
* Der ältere ''[[Kanonische Vertauschungsrelation|kanonische]] Formalismus'' lehnt sich an den Formalismus der Quantenmechanik. Er deutet die dort auftretenden Ein-Teilchen-Wellengleichungen als die Beschreibungen von Amplituden einer klassischen Feldtheorie, welche ihrerseits einer Quantisierung gemäß der kanonischen Vertauschungsregeln der Quantenmechanik bedürfen. Der Formalismus eignet sich damit, um fundamentale Eigenschaften der Felder, wie das [[Spin-Statistik-Theorem]] zu zeigen. Sein Nachteil ist jedoch, dass viele Aspekte in diesem Formalismus recht willkürlich wirken. Außerdem sind die Berechnung von Wechselwirkungsamplituden und die Feldquantisierung bei nicht-abelschen Eichtheorien recht kompliziert.
* Der neuere ''[[Pfadintegral]]-Formalismus'' baut auf dem [[Hamiltonsches Prinzip|Prinzip der kleinsten Wirkung]] auf, das heißt, es wird über alle Feldkonfigurationen integriert, sich nicht aufhebende Beiträge kommen aber bei schwacher Kopplung nur von Pfaden in der Nähe der Minima der Wirkung. Der Vorteil dieses Formalismus ist, dass sich die Berechnung von Wechselwirkungsamplituden als vergleichsweise einfach darstellt und die Symmetrien der Felder klar zum Ausdruck kommen. Der aus mathematischer Sicht schwerwiegende Mangel dieses Formalismus ist, dass die Konvergenz des Pfadintegrals und damit das Funktionieren der Methoden des Formalismus nicht mathematisch streng bewiesen ist. Er wird daher besonders in der mathematischen Physik teilweise als [[Heuristik|heuristisch]] und „unpräzise“ bzw. „nichtkonstruktiv“ abgelehnt, obwohl er zugleich als Ausgangspunkt der [[Gittereichtheorie]]n dient, die eines der Hauptwerkzeuge der numerischen Behandlung von Quantenfeldtheorien sind.
 
Im Folgenden werden die Grundlagen der Feldquantisierung für freie Felder in beiden Formalismen erklärt.
 
==== Kanonischer Formalismus ====
Für die Feldquantisierung im kanonischen Formalismus benutzt man den [[Hamiltonsche Mechanik|Hamilton-Formalismus]] der klassischen Mechanik. Man ordnet dabei jedem Feld (<math>\phi</math> bzw. <math>\psi</math>) ein ''kanonisch konjugiertes Feld'' <math>\pi</math> analog dem kanonischen Impuls zu. Das Feld und sein kanonisch konjugiertes Feld sind dann im Sinne der Quantenmechanik konjugierte Operatoren, sogenannte [[Erzeugungs- und Vernichtungsoperator#Erzeugungs- und Vernichtungsoperatoren in Quantenfeldtheorien|Feldoperatoren]], und erfüllen eine [[Heisenbergsche Unschärferelation|Unschärferelation]], wie Ort und Impuls in der Quantenmechanik. Die Unschärferelation kann entweder durch eine [[Kommutator (Mathematik)|Kommutatorrelation]] (für Bosonen nach dem [[Spin-Statistik-Theorem]]) oder eine [[Antikommutator]]relation (für Fermionen) analog zum Kommutator von Ort und Impuls realisiert werden. Den [[Hamilton-Operator]], der die Energie des Systems charakterisiert, erhält man, indem man die [[Hamilton-Funktion]] bildet und darin die Felder durch die Feldoperatoren ersetzt. Er ist in der Regel positiv definit oder darf zumindest keine unbeschränkt negativen Eigenwerte haben, da ein solches System unter beliebig großer Energieabgabe an die Umgebung in immer tiefere Energieeigenzustände fallen würde.
 
===== Skalare Felder =====
Für skalare Felder erhält man <math>\pi = \partial_0 \phi^{\dagger}</math> als kanonisch konjugiertes Feld zu <math>\,\phi</math> und <math>\pi^{\dagger} = \partial_0 \phi</math> als kanonisch konjugiertes Feld zu <math>\phi^{\dagger}\ </math>. Die geforderte Kommutatorrelation lautet
:<math>[\phi(\vec{x},t) , \pi(\vec{y},t)] = [ \phi^{\dagger}(\vec{x},t) , \pi^{\dagger}(\vec{y},t)] = i \delta^{(3)}(\vec{x} - \vec{y}).</math>
Es ist in Quantenfeldtheorien üblich, im [[Impulsraum]] zu rechnen. Dazu betrachtet man die [[Fourier-Transformation|Fourier-Darstellung]] des Feldoperators, die für das Skalarfeld lautet
:<math>\phi (x) = \int \frac{\mathrm d^4 k}{(2\pi)^4} 2\pi \delta(k^2 - m^2) \theta(k_0) \left[a(k) e^{-ikx} + b^{\dagger}(k) e^{ikx} \right].</math>
Dabei sind <math>\,k</math> der Impuls und <math>\,\theta(k_0)</math> die [[Stufenfunktion]], die bei negativem Argument 0 und sonst 1 ist.
Da <math>\,\phi(x)</math> und <math>\,\phi^{\dagger}(x)</math> Operatoren sind, trifft dies auch auf <math>\,a(k)</math>, <math>a^{\dagger}(k)</math>, <math>\,b(k)</math> und <math>b^{\dagger}(k)</math> zu. Ihre Kommutatoren folgen aus dem Kommutator der Feldoperatoren. Der Operator <math>a^{\dagger}(k)</math> kann als Operator interpretiert werden, der ein Teilchen mit Impuls <math>\,k</math> erzeugt, während <math>b^{\dagger}(k)</math> ein Antiteilchen mit Impuls <math>\,k</math> erzeugt. Entsprechend können <math>\,a(k)</math> und <math>\,b(k)</math> als Operatoren interpretiert werden, die ein Teilchen oder Antiteilchen mit Impuls <math>\,k</math> vernichten.
Die Verwendung der Kommutatorrelationen führt wie gewünscht zu einem positiv definiten Hamilton-Operator. Es können beliebig viele Skalarfelder im selben Zustand sein ([[Bose-Einstein-Statistik]]).
 
===== Spinorfelder =====
Wenn man für ein Spinorfeld analog vorgeht, erhält man <math>\pi = i \psi^{\dagger}\ </math> als kanonisch konjugiertes Feld zu <math>\psi\ </math> und <math>\overline{\pi} = i \gamma^0 \psi</math> als kanonisch konjugiertes Feld zu <math>\overline{\psi}\ </math>. Damit ergeben sich die geforderten (Anti-)Kommutatorrelationen zu
:<math> \{\psi_j(\vec{x},t) , \pi_k(\vec{y},t)\} = \{ \overline{\psi}_j(\vec{x},t) , \overline{\pi}_k(\vec{y},t)\} = i \delta_{jk} \delta^{(3)}(\vec{x} - \vec{y}).</math>
Dabei sind <math>j</math> und <math>k</math> Spinorindizes. Man betrachtet dann wieder analog die Fourier-Darstellung des Feldoperators und berechnet den Hamilton-Operator. Einen positiven Hamilton-Operator erhält man beim Spinorfeld jedoch nur, wenn man Antikommutatoren benutzt. Diese werden mit geschweiften Klammern geschrieben, was in den obigen Formeln bereits vorweggenommen wurde. Aufgrund dieser Antikommutatoren ergibt die zweimalige Anwendung desselben Erzeugungsoperators auf einen Zustand den Nullzustand. Das bedeutet, dass nie zwei Spin-1/2-Teilchen im selben Zustand sein können (Pauli-Prinzip). Spinorfelder gehorchen daher der [[Fermi-Dirac-Statistik]].
 
===== Eichfelder =====
Für Eichfelder lauten die geforderten Kommutatorrelationen
:<math>[A_{\mu}(\vec{x},t) , \pi_{\nu}(\vec{y},t)] = i g_{\mu\nu} \delta^{(3)}(\vec{x} - \vec{y}),</math>
wobei <math>g_{\mu\nu}</math> die Komponenten der [[Metrischer Tensor#Minkowski-Raum (spezielle Relativitätstheorie)|Minkowski-Metrik]] bezeichnet. Allerdings erhält man aus der Lagrangedichte <math>\,\pi_0 = 0</math>, was die geforderte Kommutatorrelation nicht erfüllen kann. Die Quantisierung von Eichfeldern ist daher nur bei Festlegung einer Eichbedingung möglich. Die Festlegung einer geeigneten Eichbedingung, die den Zugang über Kommutatorrelationen von Feldern ermöglicht und gleichzeitig die Lorentzinvarianz der Lagrangedichte erhält, ist kompliziert.
 
Man verwendet meist eine Abwandlung der [[Lorenz-Eichung]], um sinnvoll ein kanonisch konjugiertes Feld definieren zu können. Der Formalismus wird nach seinen Entwicklern [[Suraj N. Gupta]] und [[Konrad Bleuler]] als [[Gupta-Bleuler-Formalismus]] bezeichnet.
 
Eine Alternative stellt eine physikalische Eichung wie z.&nbsp;B. die temporale plus eine weitere Eichbedingung dar. Hier werden zwei der vier Polarisationen des Eichfeldes als physikalische Freiheitsgrade direkt durch die Wahl der Eichung <math>A_0(x) = 0</math> sowie durch die anschließende Implementierung des Gaußschen Gesetzes <math>G(x)\,|\text{phys.}\rangle = 0</math> als Bedingung an die physikalischen Zustände eliminiert. Der wesentliche Vorteil ist die Reduzierung des Hilbertraumes auf ausschließlich physikalische, transversale Freiheitsgrade. Dem steht als Nachteil der Verlust einer manifest kovarianten Formulierung gegenüber.
 
==== Pfadintegral ====
{{WikipediaDE|Pfadintegral}}
 
Im Pfadintegralformalismus werden die Felder nicht als Operatoren, sondern als einfache Funktionen behandelt. Das [[Pfadintegral]] stellt im Wesentlichen eine Übergangsamplitude von einem Vakuumzustand zum Zeitpunkt <math>t=-\infty</math> zu einem Vakuumzustand zum Zeitpunkt <math>t=\infty</math> dar, wobei über alle dazwischen möglichen Feldkonfigurationen (''Pfade'') integriert wird, mit einem Phasenfaktor, der durch die Wirkung festgelegt wird. Es hat für das Skalarfeld die Form
:<math>Z \propto \int \mathcal{D}\phi \, \exp{\left\{ i \int \mathrm{d}^4x \mathcal{L}(\phi) \right\}}</math>.
 
Um allerdings überhaupt Wechselwirkungen bei einem Übergang vom [[Vakuum]] zum Vakuum zu erhalten, müssen Felder erzeugt und vernichtet werden können. Dies wird im Pfadintegralformalismus nicht mithilfe von Erzeugungs- und Vernichtungsoperatoren, sondern durch Quellenfelder erzielt. Es wird also zur Lagrangedichte ein Quellenterm der Form <math>J^{\dagger}(x)\phi(x) + \phi^{\dagger}(x)J(x)\ </math> hinzugefügt. Das Quellenfeld ''J(x)'' soll nur in einem endlichen Intervall auf der Zeitachse von Null verschieden sein. Das bedeutet, dass die wechselwirkenden Felder genau innerhalb dieses Zeitintervalls existieren. Das volle Pfadintegral für ein freies Skalarfeld hat damit die Form
:<math>Z[J] \propto \int \mathcal{D}\phi \, \exp{\left\{ i \int \mathrm{d}^4x \left[ (\partial_{\mu} \phi^{\dagger})(\partial^{\,\mu} \phi) - m^2 \phi^{\dagger} \phi + J^{\dagger} \phi + \phi^{\dagger} J \right]\right\}}</math>.
 
Das lässt sich wegen der Integration über <math>\,\phi</math> mit einem Analogon des [[Fehlerintegral|gaußschen Fehlerintegrals]] in eine Form bringen, die in bestimmter Weise nur noch vom Quellenfeld ''J(x)'' abhängt, und zwar:
:<math>Z[J] \propto \exp{\left\{-i \int J^{\dagger}(x) \Delta_F (x-y) J(y)\, \mathrm{d}^4 x\, \mathrm{d}^4 y \right\}}</math>.
 
Dabei ist <math>\Delta_F</math> gegeben durch <math>(\square + m^2)\Delta_F(x) = - \delta^{(4)}(x)</math> also gewissermaßen als das [[Inverse Matrix|Inverse]] des Klein-Gordon-Operators (<math>\square</math> ist der [[D’Alembert-Operator]]). Dieses Objekt wird als zeitgeordnete [[Greensche Funktion]] oder Feynman-[[Propagator]] bezeichnet. Man bezeichnet das Pfadintegral daher auch als ''Erzeugendenfunktional des Propagators'', da die Ableitungen nach <math>J^{\dagger}</math> und <math>\,J</math> effektiv einer Multiplikation mit dem Propagator entsprechen.
 
Das Verhalten des freien Feldes in Anwesenheit von Quellen wird nur durch den Propagator und das Quellenfeld bestimmt. Dieses Ergebnis entspricht der Erwartung, denn das Verhalten eines Feldes, das nicht wechselwirkt, ist offenbar nur durch seine Eigenschaften bei Erzeugung und Vernichtung und seine freie Bewegung bestimmt. Erstere stecken im Quellenfeld und das Bewegungsverhalten wird durch den Klein-Gordon-Operator bestimmt, dessen Informationsgehalt hier durch sein Inverses gegeben ist.
 
Bei der Quantisierung des Spinorfeldes im Pfadintegral-Formalismus tritt das Problem auf, dass die Felder einerseits wie normale zahlenwertige Funktionen behandelt werden, auf der anderen Seite jedoch antikommutieren. Normale Zahlen kommutieren jedoch. Diese Schwierigkeit lässt sich lösen, indem man die Fermionfelder als Elemente einer [[Graßmann-Algebra]], sogenannte [[Graßmann-Zahl]]en, auffasst. Rechnerisch bedeutet das nur, dass man sie wie antikommutierende Zahlen behandelt. Durch die Graßmann-Algebra ist diese Vorgehensweise theoretisch abgesichert. Das Pfadintegral mit Quellenfeldern <math>\overline{\eta}\ </math> und <math>\eta\ </math> hat dann die Form
:<math>Z[\eta,\overline{\eta}] \propto \int \mathcal{D}\overline{\psi}\mathcal{D}\psi \, \exp{\left\{ i \int \mathrm{d}^4x \left[\, \overline{\psi}(i \gamma^{\,\mu}\partial_{\mu} - m) \psi + \overline{\eta} \psi + \overline{\psi} \eta \right]\right\}}</math>.
 
Daraus lässt sich, wie beim skalaren Feld, eine Form ableiten, die in bestimmter Weise nur noch von <math>\overline{\eta }\ </math> und <math>\eta \ </math> abhängt. Dabei lässt sich erneut ein Analogon des [[Fehlerintegral|gaußschen Integrals]] anwenden, das allerdings nicht dem gewohnten Formalismus entspricht, sondern in gewisser Weise dazu „invers“ ist. Zunächst ist es jedenfalls nötig, einen Integralbegriff für Graßmann-Zahlen zu entwickeln. Dann lässt sich das Pfadintegral in die folgende Form bringen:
:<math>Z[\eta,\overline{\eta}] \propto \exp{\left\{-i \int \overline{\eta}(x) S (x-y) \eta(y)\, \mathrm{d}^4x\, \mathrm{d}^4y \right\}}</math>.
 
Dabei ist <math>S = (i \gamma^{\,\mu}\partial_{\mu} + m)\Delta_F</math> das Inverse des Dirac-Operators, das auch als Dirac-Propagator bezeichnet wird. Analog zum skalaren Feld ergibt sich auch hier eine Form, die erwartungsgemäß nur von den Quellenfeldern und der Dynamik der Felder bestimmt ist.
 
Das Pfadintegral für ein Eichfeld ist von der Form
:<math>Z \propto \int \mathcal{D}A_{\mu} \, \exp{\left\{ i \int \mathrm{d}^4x \left[- \frac{1}{2} A^{\mu}(g_{\mu\nu}\square - \partial_{\mu} \partial_{\nu}) A^{\nu} \right]\right\}}</math>.
 
Der Operator <math>(g_{\mu\nu}\square - \partial_{\mu} \partial_{\nu})\ </math> hat jedoch kein Inverses. Das erkennt man daran, dass er bei Anwendung auf Vektoren des Typs <math>\partial_{\mu} v</math> Null ergibt. Mindestens einer seiner Eigenwerte ist also Null, was analog einer [[Matrix (Mathematik)|Matrix]] dafür sorgt, dass der Operator nicht invertierbar ist.
 
Daher lässt sich hier nicht dieselbe Vorgehensweise anwenden, wie beim skalaren Feld und beim Spinorfeld. Man muss der Lagrangedichte einen zusätzlichen Term hinzufügen, so dass man einen Operator erhält, zu dem es ein Inverses gibt. Dies ist äquivalent dazu, eine Eichung festzulegen. Daher bezeichnet man den neuen Term als ''eichfixierenden Term''. Er ist allgemein von der Form <math>\mathcal{L}_{gf} = \tfrac{1}{2\alpha} f^2(A_{\mu})</math>. Die dazu korrespondierende Eichbedingung lautet <math>f(A_{\mu}) \stackrel{!}{=} 0\ </math>.
 
Das führt jedoch dazu, dass die Lagrangedichte von der Wahl des Eichterms ''f'' abhängt. Dieses Problem lässt sich durch das Einführen von sogenannten [[Faddejew-Popow-Geister]]n beheben. Diese Geister sind antikommutierende skalare Felder und widersprechen damit dem Spin-Statistik-Theorem. Sie können daher nicht als freie Felder auftreten, sondern nur als sogenannte [[Virtuelles Teilchen|virtuelle Teilchen]]. Durch die Wahl der sogenannten [[Axial-Eichung]] lässt sich das Auftreten dieser Felder vermeiden, was ihre Interpretation als mathematische Artefakte naheliegend erscheinen lässt. Ihr Auftreten in anderen Eichungen ist jedoch aus tieferliegenden theoretischen Gründen (Unitarität der [[S-Matrix]]) zwingend notwendig für die Konsistenz der Theorie.
 
Die vollständige Lagrangedichte mit eichfixierendem Term und Geistfeldern ist von der Eichbedingung abhängig. Für die Lorenz-Eichung lautet sie bei nichtabelschen Eichtheorien
:<math>\mathcal L(A, \overline{\eta } ,\eta ) = - \frac{1}{4} F^a_{\mu\nu} F^{\mu\nu\,a} - \frac{1}{2\alpha} (\partial_{\mu} A^{\mu\,a})^2 - \bar \eta^a \partial^{\mu} (\partial_{\mu} \delta^{ac} - i g f^{abc} A_{\mu}^b) \eta^c</math>
Dabei ist <math>\eta\ </math> das Geistfeld und <math>\bar \eta</math> das Anti-Geistfeld.
 
Für abelsche Eichtheorien wie den Elektromagnetismus nimmt der letzte Term unabhängig von der Eichung die Form <math> \bar \eta \square \eta</math> an. Daher kann dieser Teil des Pfadintegrals einfach integriert werden und trägt nicht zur Dynamik bei.
 
Das Pfadintegral liefert auch einen Zusammenhang mit den Verteilungsfunktionen der statistischen Mechanik. Dazu wird die ''imaginäre'' Zeitkoordinate im [[Minkowskiraum]] analytisch in den euklidischen Raum fortgesetzt und statt komplexer Phasenfaktoren im Wegintegral erhält man reelle ähnlich den Boltzmann-Faktoren der statistischen Mechanik. In dieser Form ist diese Formulierung auch Ausgangspunkt von numerischen Simulationen der Feldkonfigurationen (meist zufällig im Monte-Carlo-Verfahren mit einer Wichtung über diese ''Boltzmannfaktoren'' ausgewählt) in [[Gittereichtheorie|Gitter]]-Rechnungen. Sie liefern die bisher genauesten Methoden z.&nbsp;B. für die Berechnung von Hadronmassen in der Quantenchromodynamik.
 
=== Streuprozesse ===
Wie oben schon ausgeführt, ist das Ziel der vorangegangenen Verfahren die Beschreibung einer relativistischen Streutheorie. Obwohl die Methoden der Quantenfeldtheorien heute auch in anderen Zusammenhängen genutzt werden, ist die Streutheorie noch heute eines ihrer Hauptanwendungsgebiete. Daher werden die Grundlagen derselben an dieser Stelle erläutert.
 
Das zentrale Objekt der Streutheorie ist die sogenannte ''[[S-Matrix]]'' oder ''Streumatrix'', deren Elemente die Übergangswahrscheinlichkeit von einem Anfangszustand <math>|\alpha_\mathrm{in}\rangle</math> in einen Ausgangszustand <math>|\beta_\mathrm{out}\rangle</math> beschreiben. Die Elemente der S-Matrix bezeichnet man als Streuamplituden. Auf der Ebene der Felder ist die S-Matrix also bestimmt durch die Gleichung
:<math>\phi_\mathrm{out}(x) = S^{\dagger} \phi_\mathrm{in}(x) S\ </math>.
 
Die S-Matrix lässt sich im Wesentlichen als Summe von [[Vakuumerwartungswert]]en von zeitgeordneten Feldoperatorprodukten (auch n-Punkt-Funktionen, [[Korrelator]]en oder [[Greensche Funktion]]en genannt) schreiben. Ein Beweis dieser sogenannten [[LSZ-Reduktionsformel|LSZ-Zerlegung]] ist einer der ersten großen Erfolge der [[Axiomatische Quantenfeldtheorie|axiomatischen Quantenfeldtheorie]]. Im Beispiel einer Quantenfeldtheorie, in der es nur ein Skalarfeld gibt, hat die Zerlegung die Form
:<math>S = \sum_{n\ge 0} \frac{1}{n!} \left( \prod_{i=0}^n \phi (x_i) K(x_i) \right) \langle 0| T \left( \phi(x_1) \, ... \, \phi(x_n) \right) |0 \rangle </math>
Dabei ist ''K'' der Klein-Gordon-Operator und T der Zeitordnungsoperator, der die Felder aufsteigend nach dem Wert der Zeit <math>x_i^0</math> ordnet. Falls noch andere Felder als das Skalarfeld vorkommen, müssen jeweils die entsprechenden Hamilton-Operatoren verwendet werden. Für ein Spinorfeld muss z.&nbsp;B. der Dirac-Operator statt des Klein-Gordon-Operators verwendet werden.
 
Zur Berechnung der S-Matrix genügt es also, die zeitgeordneten n-Punkt-Funktionen <math>\langle 0| T \left( \phi(x_1) \, ... \, \phi(x_n) \right) |0 \rangle</math> berechnen zu können.
 
=== Feynman-Regeln und Störungstheorie ===
Als nützliches Werkzeug zur Vereinfachung der Berechnungen der n-Punkt-Funktionen haben sich die [[Feynman-Diagramm]]e erwiesen. Diese Kurzschreibweise wurde 1950 von [[Richard Feynman]] entwickelt und nutzt aus, dass sich die Terme, die bei der Berechnung der n-Punkt-Funktionen auftreten, in eine kleine Anzahl elementarer Bausteine zerlegen lassen. Diesen Term-Bausteinen werden dann Bildelemente zugeordnet. Diese Regeln, nach denen diese Zuordnung geschieht, bezeichnet man als [[Feynman-Regeln]]. Die Feynman-Diagramme ermöglichen es damit, komplizierte Terme in Form kleiner Bilder darzustellen.
 
Dabei gibt es zu jedem Term in der Lagrangedichte ein entsprechendes Bildelement. Der Massenterm wird dabei zusammen mit dem Ableitungsterm als ein Term behandelt, der das freie Feld beschreibt. Diesen Termen werden für verschiedene Felder meist verschiedene Linien zugeordnet. Den Wechselwirkungstermen entsprechen dagegen Knotenpunkte, sogenannte ''Vertices'', an denen für jedes Feld, das im Wechselwirkungsterm steht, eine entsprechende Linie endet. Linien, die nur an einem Ende mit dem Diagramm verbunden sind, werden als reale Teilchen interpretiert, während Linien, die zwei Vertices verbinden als [[Virtuelles Teilchen|virtuelle Teilchen]] interpretiert werden. Es lässt sich auch eine Zeitrichtung im Diagramm festlegen, so dass es als eine Art Veranschaulichung des Streuprozesses interpretiert werden kann. Dabei muss man jedoch zur vollständigen Berechnung einer bestimmten Streuamplitude alle Diagramme mit den entsprechenden Anfangs- und Endteilchen berücksichtigen. Wenn die Lagrangedichte der Quantenfeldtheorie Wechselwirkungsterme enthält, sind dies im Allgemeinen unendlich viele Diagramme.
 
Wenn die Kopplungskonstante kleiner ist als eins, werden die Terme mit höheren Potenzen der Kopplungskonstante immer kleiner. Da nach den Feynmanregeln jeder Vertex für die Multiplikation mit der entsprechenden Kopplungskonstante steht, werden die Beiträge von Diagrammen mit vielen Vertices sehr klein. Die einfachsten Diagramme liefern also den größten Beitrag zur Streuamplitude, während die Diagramme mit zunehmender Kompliziertheit gleichzeitig immer kleinere Beiträge liefern. Auf diese Weise lassen sich die Prinzipien der [[Störungstheorie (Quantenfeldtheorie)|Störungstheorie]] unter Erzielung guter Ergebnisse für die Streuamplituden anwenden, indem nur die Diagramme niedriger Ordnung in der Kopplungskonstanten berechnet werden.
 
=== Renormierung ===
{{WikipediaDE|Renormierung}}
 
Die Feynman-Diagramme mit geschlossenen inneren Linien, die sogenannten Schleifendiagramme (z.&nbsp;B. Wechselwirkung eines Elektrons mit „virtuellen“ Photonen aus dem Vakuum, Wechselwirkung eines Photons mit virtuell erzeugten Teilchen-Antiteilchen Paaren aus dem Vakuum), sind meist divergent, da über alle Energien/Impulse (Frequenz/Wellenzahl) integriert wird. Das hat zur Folge, dass sich kompliziertere Feynman-Diagramme zunächst nicht berechnen lassen. Dieses Problem lässt sich jedoch häufig durch ein sogenanntes [[Renormierung]]sverfahren beheben, nach einer falschen Rückübersetzung aus dem Englischen auch manchmal als „Renormalisierung“ bezeichnet.
 
Es gibt grundsätzlich zwei verschiedene Sichtweisen auf diese Prozedur. Die erste traditionelle Sichtweise ordnet die Beiträge der divergierenden Schleifendiagramme so an, dass sie wenigen Parametern in der Lagrangefunktion wie Massen und Kopplungskonstanten entsprechen. Dann führt man Gegenterme (counter terms) in der Lagrangefunktion ein, die als unendliche „nackte“ Werte dieser Parameter diese Divergenzen aufheben. Das ist in der Quantenelektrodynamik möglich, ebenso in der Quantenchromodynamik und anderen solchen Eichtheorien, bei anderen Theorien wie der Gravitation dagegen nicht. Dort wären unendlich viele Gegenterme nötig, die Theorie ist „nicht renormierbar“.
 
Eine zweite neuere Sichtweise aus dem Umfeld der [[Renormierungsgruppe]] beschreibt die Physik je nach Energiebereich durch verschiedene „effektive“ Feldtheorien. Beispielsweise ist die Kopplungskonstante in der Quantenchromodynamik energieabhängig, für kleine Energien geht sie gegen Unendlich ([[confinement]]), für hohe Energien gegen Null ([[Asymptotische Freiheit]]). Während in der QED die „nackten“ Ladungen durch die Vakuumpolarisation ([[Paarbildung (Physik)|Paarerzeugung und -vernichtung]]) wirksam abgeschirmt werden, liegt der Fall bei [[Yang-Mills-Theorie]]n wie der QCD wegen der Selbstwechselwirkung der geladenen Eichbosonen komplizierter.
 
Man vermutet, dass sich alle Kopplungskonstanten physikalischer Theorien bei genügend hohen Energien annähern, und dort wird die Physik dann durch eine [[große vereinheitlichte Theorie]] der Grundkräfte beschrieben. Das Verhalten von Kopplungskonstanten und die Möglichkeit von Phasenübergängen mit der Energie wird durch die Theorie der Renormierungsgruppe beschrieben. Aus solchen theoretischen Extrapolationen hat es in den 1990er Jahren erste Hinweise auf die Existenz [[Supersymmetrie|supersymmetrischer]] Theorien gegeben, für die sich die Kopplungskonstanten am besten in einem Punkt treffen.
 
Die technische Vorgehensweise ist jedoch unabhängig von der Sichtweise. Es wird zunächst eine [[Regularisierung]] vorgenommen, indem ein zusätzlicher Parameter in die Rechnung eingeführt wird. Dieser Parameter muss zuletzt wieder gegen null oder unendlich laufen (je nach Wahl) um die ursprünglichen Terme wieder zu erhalten. Solange der Regularisierungsparameter jedoch als endlich angenommen wird, bleiben die Terme endlich. Man formt dann die Terme so um, dass die Unendlichkeiten nur noch in Termen auftreten, die reine Funktionen des Regularisierungsparameters sind. Diese Terme werden dann weggelassen. Danach setzt man den Regulierungsparameter null bzw. unendlich, wobei das Ergebnis nun endlich bleibt.
 
Diese Vorgehensweise wirkt auf den ersten Blick willkürlich, doch das „Weglassen“ muss nach bestimmten Regeln erfolgen. Dadurch wird sichergestellt, dass die renormierten Kopplungskonstanten bei niedrigen Energien den gemessenen Konstanten entsprechen.
 
=== Antiteilchen ===
{{WikipediaDE|Antiteilchen}}
 
Ein spezielles Gebiet der relativistischen Quantenmechanik betrifft Lösungen der relativistischen [[Klein-Gordon-Gleichung]] und der [[Dirac-Gleichung]] mit negativer Energie. Dies würde es Teilchen erlauben, zu unendlicher negativer Energie abzusteigen, was in der Realität nicht beobachtet wird. In der Quantenmechanik löst man dieses Problem, indem man die entsprechenden Lösungen willkürlich als Entitäten mit positiver Energie interpretiert, die sich rückwärts in der Zeit bewegen; man überträgt also in der [[Wellenfunktion]] das negative [[Vorzeichen (Zahl)|Vorzeichen]] von der Energie ''E'' auf die Zeit ''t'', was wegen der Beziehung <math>\Delta E=h/\Delta t</math>  naheliegend ist (&nbsp;''h''&nbsp; ist die [[Plancksche Konstante]] und <math>h\Delta f\,\,(=h/\Delta t) </math> das der Energiedifferenz <math>\Delta E</math> zugeordnete Frequenzintervall).
 
[[Paul Dirac]] interpretierte diese rückwärts bewegten Lösungen als [[Antiteilchen]].
 
== Konkrete Quantenfeldtheorien ==
=== Standardmodell ===
{{WikipediaDE|Standardmodell}}
 
Durch Kombination des elektroschwachen Modells mit der Quantenchromodynamik entsteht eine vereinte Quantenfeldtheorie, das so genannte Standardmodell der Elementarteilchenphysik. Es enthält alle bekannten Teilchen und kann die meisten bekannten Vorgänge erklären.
 
Gleichzeitig ist aber bekannt, dass das Standardmodell nicht die endgültige Theorie sein kann. Zum einen ist die Gravitation nicht enthalten, zum anderen gibt es eine Reihe von Beobachtungen ([[Neutrinooszillation]]en, [[Dunkle Materie]]), nach denen eine Erweiterung des Standardmodells notwendig scheint. Außerdem enthält das Standardmodell viele willkürliche Parameter und erklärt z.&nbsp;B. das sehr unterschiedliche Massenspektrum der Elementarteilchenfamilien nicht.
 
Die im Folgenden erläuterten Quantenfeldtheorien sind alle im Standardmodell enthalten.
 
=== ''ϕ''<sup>4</sup>-Theorie ===
Die Lagrangedichte der <math>\phi^4</math>-Theorie lautet
:<math>\mathcal{L}=(\partial_\mu \phi^{\dagger})(\partial^\mu \phi) -m^2 \phi^{\dagger} \phi -\frac{\lambda}{4}(\phi^{\dagger} \phi)^2</math>
Diese Quantenfeldtheorie besitzt große theoretische Bedeutung, da sie die einfachste denkbare Quantenfeldtheorie mit einer Wechselwirkung ist und hier im Gegensatz zu realistischeren Modellen einige exakte mathematische Aussagen über ihre Eigenschaften gemacht werden können. Sie beschreibt ein selbstwechselwirkendes reelles oder komplexes Skalarfeld.
 
In der statistischen Physik spielt sie eine Rolle als einfachstes Kontinuumsmodell für die (sehr allgemeine) [[Landau-Theorie]] der Phasenübergänge zweiter Ordnung und der kritischen Phänomene. Von der statistischen Interpretation aus bekommt man zugleich einen neuen und konstruktiven Zugang zum Renormierungsproblem, indem gezeigt wird, dass die Renormierung der Massen, Ladungen und Vertex-Funktionen durch Eliminierung kurzwelliger Wellenphänomene aus der sog. Zustandssumme <math>\mathcal Z</math> (englisch: „Partition Function“) erreicht werden kann. Auch das [[Higgs-Mechanismus|Higgsfeld]] des [[Standardmodell]]s hat eine <math>\phi^4</math>-Selbstwechselwirkung, die allerdings noch um Wechselwirkungen mit den anderen Feldern des Standardmodells ergänzt wird. In diesen Fällen ist die Kopplungskonstante ''m<sup>2</sup>'' negativ, was einer imaginären Masse entspräche. Diese Felder werden daher als [[tachyon]]ische Felder bezeichnet. Diese Bezeichnung bezieht sich jedoch auf das ''Higgsfeld'' und nicht auf das ''[[Higgs-Boson|Higgs-Teilchen]]'', das sogenannte Higgs-Boson, welches kein Tachyon, sondern ein gewöhnliches Teilchen mit reeller Masse ist. Das Higgsteilchen wird auch nicht durch das Higgsfeld beschrieben, sondern nur durch einen bestimmten Anteil dieses Feldes.
 
=== Quantenelektrodynamik ===
{{WikipediaDE|Quantenelektrodynamik}}
 
Die Lagrangedichte der Quantenelektrodynamik (QED) lautet
:<math>\mathcal{L} = i \overline{\psi} \gamma^{\mu} (\partial_{\mu} - i e A_{\mu}) \psi - m \overline{\psi} \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}</math>
Die QED ist die erste physikalisch erfolgreiche Quantenfeldtheorie. Sie beschreibt die Wechselwirkung eines Spinorfeldes mit Ladung ''-e'', das das Elektron beschreibt, mit einem Eichfeld, das das Photon beschreibt. Man erhält ihre Bewegungsgleichungen aus der Elektrodynamik durch Quantisierung der [[Maxwellsche Gleichungen|maxwellschen Gleichungen]]. Die Quantenelektrodynamik erklärt mit hoher Genauigkeit die [[elektromagnetische Wechselwirkung]] zwischen geladenen Teilchen (zum Beispiel [[Elektron]]en, [[Myon]]en, [[Quark (Physik)|Quarks]]) mittels Austausch von virtuellen [[Photon]]en sowie die Eigenschaften von [[Elektromagnetische Welle|elektromagnetischer Strahlung]].
 
Dadurch lassen sich etwa die [[Chemisches Element|chemischen Elemente]], ihre Eigenschaften und [[Chemische Bindung|Bindungen]] und das [[Periodensystem]] der Elemente verstehen. Auch die [[Festkörperphysik]] mit der wirtschaftlich bedeutsamen [[Halbleiterphysik]] leiten sich letztendlich von der QED ab. Konkrete Rechnungen werden allerdings in der Regel im vereinfachten, aber ausreichenden Formalismus der [[Quantenmechanik]] durchgeführt.
 
=== Schwache Wechselwirkung ===
{{WikipediaDE|Schwache Wechselwirkung}}
 
Die schwache Wechselwirkung, deren bekanntester Effekt der [[Betazerfall]] ist, nimmt eine physikalisch geschlossene Formulierung nach Vereinheitlichung mit der QED im [[Elektroschwache Wechselwirkung|elektroschwachen Standardmodell]] an.
Die Wechselwirkung wird hier durch [[Photon]]en, [[W-Boson|W-]] und [[Z-Boson]]en vermittelt.
 
=== Quantenchromodynamik ===
{{WikipediaDE|Quantenchromodynamik}}
 
Ein anderes Beispiel einer QFT ist die Quantenchromodynamik (QCD), welche die [[Starke Wechselwirkung]] beschreibt.
In ihr wird ein Teil der im [[Atomkern]] auftretenden [[Fundamentale Wechselwirkung|Wechselwirkungen]] zwischen [[Proton]]en und [[Neutron]]en auf die subnukleare Wechselwirkung zwischen [[Quark (Physik)|Quarks]] und [[Gluon]]en reduziert.
 
Interessant ist in der QCD, dass die [[Gluon]]en, welche die Wechselwirkung vermitteln, selbst miteinander wechselwirken. (Das wäre am Beispiel der QED etwa so, als ob sich zwei durchdringende Lichtstrahlen direkt beeinflussen würden.) Eine Konsequenz dieser gluonischen Selbstwechselwirkung ist, dass die elementaren [[Quark (Physik)|Quarks]] nicht einzeln beobachtet werden können, sondern immer in Form von Quark-Antiquark-Zuständen oder Zuständen dreier Quarks (oder Antiquarks) auftreten ([[Confinement]]). Auf der anderen Seite folgt daraus, dass die Kopplungskonstante bei hohen Energien nicht zunimmt, sondern abnimmt. Dieses Verhalten wird als ''[[asymptotische Freiheit]]'' bezeichnet.
 
== Weiterführende Aspekte ==
=== Spontane Symmetriebrechung ===
{{WikipediaDE|Spontane Symmetriebrechung}}
 
Wie oben schon angesprochen, eignet sich die <math>\phi^4</math>-Theorie zur Beschreibung von Systemen mit spontaner Symmetriebrechung oder kritischen Punkten. Der Massenterm wird dazu als Teil des Potentials verstanden. Für eine reelle Masse hat dieses Potential dann nur ein Minimum, während bei imaginärer Masse das Potential eine w-förmige Parabel vierten Grades beschreibt. Wenn das Feld mehr als eine reelle Komponente hat, erhält man noch mehr Minima. Bei einem komplexen Feld (mit zwei reellen Komponenten) erhält man zum Beispiel die Rotationsfigur der w-förmigen Parabel mit einem Minimakreis. Diese Form wird auch als ''Mexican Hat Potential'' bezeichnet, da das Potential an die Form eines [[Sombrero]] erinnert.
 
Jedes Minimum entspricht nun einem Zustand niedrigster Energie, die vom Feld alle mit gleicher Wahrscheinlichkeit angenommen werden. In jedem dieser Zustände hat das Feld jedoch ein geringeres Maß an Symmetrie, da die Symmetrie der Minima untereinander durch Auswahl eines Minimums verloren geht. Diese Eigenschaft der klassischen Feldtheorie überträgt sich auf die Quantenfeldtheorie, so dass sich die Möglichkeit ergibt, Quantensysteme mit gebrochener Symmetrie zu beschreiben. Beispiele für solche Systeme sind das [[Ising-Modell]] aus der Thermodynamik, das die spontane Magnetisierung eines Ferromagneten erklärt, und der [[Higgs-Mechanismus]], der die Massen der Eichbosonen in der schwachen Wechselwirkung erklärt. Durch die erhaltenen Massenterme der Eichbosonen wird nämlich die Eichsymmetrie reduziert.
 
=== Axiomatische Quantenfeldtheorie ===
{{WikipediaDE|Axiomatische Quantenfeldtheorie}}
 
Die Axiomatische Quantenfeldtheorie versucht, ausgehend von einem Satz möglichst weniger, als mathematisch oder physikalisch unumgänglich angesehener Axiome, eine konsistente Beschreibung der Quantenfeldtheorie zu erzielen.
 
Die axiomatische Quantenfeldtheorie wurde u.&nbsp;a. aus den [[Wightman-Axiome]]n, entstanden im Jahr 1956, begründet. Ein weiterer Zugang ist die von [[Rudolf Haag|Haag]] und Araki 1962 formulierte algebraische Quantenfeldtheorie, die durch die [[Haag-Kastler-Axiome]] charakterisiert wird. Die [[Osterwalder-Schrader-Axiome]] stellen einen dritten axiomatischen Zugang zur Quantenfeldtheorie dar.
 
Etliche konkrete Ergebnisse konnten mit dieser Herangehensweise erzielt werden, zum Beispiel die Herleitung des [[Spin-Statistik-Theorem]]s und des [[CPT-Theorem]]s alleine aus den Axiomen, d.&nbsp;h. unabhängig von einer speziellen Quantenfeldtheorie. Ein früher Erfolg war die 1955 von [[Harry Lehmann|Lehmann]], [[Kurt Symanzik|Symanzik]] und [[Wolfhart Zimmermann|Zimmermann]] entwickelte [[LSZ-Reduktionsformel]] für die [[S-Matrix]]. Außerdem existiert ein von [[Nikolai Nikolajewitsch Bogoljubow|Bogoliubov]], Medvedev und Polianov begründeter funktionalanalytischer Zugang zur S-Matrix-Theorie (auch BMP-Theorie genannt).
 
Weitere Anwendungen im Bereich der klassischen Statistik und der Quantenstatistik sind schon sehr weit fortgeschritten. Sie reichen von der allgemeinen Ableitung der Existenz thermodynamischer Größen, [[Gibbs-Helmholtz-Gleichung|Satz von Gibbs]], Zustandsgrößen wie Druck, innerer Energie und [[Entropie (Thermodynamik)|Entropie]] bis zum Beweis der Existenz von Phasenübergängen und der exakten Behandlung wichtiger Vielteilchensysteme:
* des [[BCS-Theorie|Bardeen-Cooper-Schrieffer]]-Modells der Supraleitfähigkeit
* des [[Werner Heisenberg|Heisenbergschen]] Ferromagneten
* des idealen Bose-Gases.
 
== Verhältnis zu anderen Theorien ==
Versuche, diese Quantenfeldtheorien mit der [[Allgemeine Relativitätstheorie|allgemeinen Relativitätstheorie]] (Gravitation) zur [[Quantengravitation]] zu vereinen, sind bisher ohne Erfolg geblieben. Nach Ansicht vieler Forscher erfordert die Quantisierung der Gravitation neue, über die Quantenfeldtheorie hinausgehende Konzepte, da hier der Raum-Zeit Hintergrund selbst dynamisch wird. Beispiele aus der aktuellen Forschung sind die [[Stringtheorie]], die [[M-Theorie]] und die [[Loop-Quantengravitation]]. Weiter liefern die [[Supersymmetrie]], die [[Twistor-Theorie]], die [[FQFT|Finite Quantenfeldtheorie]] und die [[Topologische Quantenfeldtheorie]] wichtige konzeptionelle Ideen, die zurzeit in der Fachwelt diskutiert werden.
 
Auch in der Festkörpertheorie finden sich Anwendungen der (nicht-relativistischen) Quantenfeldtheorie, und zwar hauptsächlich in der [[Vielteilchentheorie]].
 
== Siehe auch ==
* {{WikipediaDE|Kategorie:Quantenfeldtheorie}}
* {{WikipediaDE|Quantenfeldtheorie}}


== Literatur ==
== Literatur ==
Allgemeine Einführungen in das Thema (jeweils in alphabetischer Reihenfolge der (Erst-)Autoren)
=== Monographien ===
* ''Schellengeklingel oder Offenbarung. Rationalität und ästhetische Lust in deutschen Kunsttheorien bis zur Moderne'' (= ''Kunstwissenschaft – Theorie und Methode.'' Bd. 1). Lit, Münster u. a. 1991, ISBN 3-88660-771-2 (Zugleich: Marburg, Universität, Dissertation, 1989).
* ''Dithyrambiker des Untergangs. Gnostizismus in Ästhetik und Philosophie der Moderne.'' Akademie Verlag, Berlin 1994, ISBN 3-05-002659-6.
* ''Pessimismus. Geschichtsphilosophie, Metaphysik und Moderne von Nietzsche bis Spengler.'' Akademie Verlag, Berlin 1997, ISBN 3-05-003094-1.
* mit Karl Hoheisel: ''Vorträge aus der Tagung: Gnosis und die Spiritualität der Postmoderne. (Zur Einschätzung moderner Strömungen als gnostisch).''(= ''Hofgeismarer Vorträge.'' Bd. 7, {{ISSN|0931-0398}}). Evangelische Akademie, Hofgeismar 1997.
* ''Das Rätsel des Bewusstseins. Eine Erklärungsstrategie.'' Mentis, Paderborn 1999, ISBN 3-89785-087-7.
* ''Grundprobleme der Philosophie des Geistes. Eine Einführung'' (= ''Fischer'' 14568). Fischer-Taschenbuch-Verlag, Frankfurt am Main 2001, ISBN 3-596-14568-6.
* ''Illusion Freiheit? Mögliche und unmögliche Konsequenzen der Hirnforschung.'' S. Fischer, Frankfurt am Main 2004, ISBN 3-10-061910-2.
* ''Was ist der Mensch? Die Entdeckung der Natur des Geistes.'' Deutsche Verlags-Anstalt, München 2007, ISBN 978-3-421-04224-8.
* mit [[Gerhard Roth (Biologe)|Gerhard Roth]]: ''Freiheit, Schuld und Verantwortung. Grundzüge einer naturalistischen Theorie der Willensfreiheit'' (= ''Edition Unseld.'' 12). Suhrkamp, Frankfurt am Main 2008, ISBN 978-3-518-26012-8.
* mit [[Wikipedia:Harald Welzer|Harald Welzer]]: ''Autonomie. Eine Verteidigung.'' S. Fischer, Frankfurt a. M. 2015, ISBN 978-3-10-002250-9.
* Die Natur des Geistes, S. Fischer, Frankfurt am Main 2016, ISBN 978-3-10-002408-4.
* ''Die weitverbreitete Vorstellung, eine angemessene Beschreibung phänomenalen Bewusstseins könne nur aus der Erste-Person-Perspektive gelingen, ist falsch'' in: [[Wikipedia:Matthias Eckoldt|Matthias Eckoldt]] ''Kann sich das Bewusstsein bewusst sein?'' Carl-Auer, Heidelberg 2017, ISBN 978-3-8497-0202-1


Deutsch:
=== Herausgeberschaft ===
* Christoph Berger: ''Elementarteilchenphysik''. 2. Auflage, Springer, 2006
* mit Heiner F. Klemme, Bernd Ludwig und Werner Stark: ''Aufklärung und Interpretation. Studien zur Philosophie Kants und ihrem Umkreis.'' Tagung aus Anlaß des 60. Geburtstags von Reinhard Brandt. Königshausen & Neumann, Würzburg 1999, ISBN 3-8260-1630-0.
* Freeman Dyson: ''Quantenfeldtheorie.'' Springer Spektrum, 2014, ISBN 978-3-642-37677-1
* mit Gerald Funk und [[Wikipedia:Gert Mattenklott|Gert Mattenklott]]: ''Ästhetik des Ähnlichen. Zur Poetik und Kunstphilosophie der Moderne'' (= ''Fischer'' 15003). Fischer-Taschenbuch-Verlag, Frankfurt am Main 2001, ISBN 3-596-15003-5.
* Walter Greiner u.&nbsp;a.: ''Theoretische Physik''. Verlag Harri Deutsch, Bände ''Feldquantisierung'' 1993, ''Quantenelektrodynamik'' 1994, ''Eichtheorie der schwachen Wechselwirkung'', 1994, ''Quantenchromodynamik''
* mit Gerhard Roth: ''Neurowissenschaften und Philosophie. Eine Einführung'' (= ''UTB'' 2208). Fink, Stuttgart ISBN 3-8252-2208-X.
* mit [[Wikipedia:Achim Stephan|Achim Stephan]]: ''Phänomenales Bewusstsein – Rückkehr der Identitätstheorie?'' Mentis, Paderborn 2002, ISBN 3-89785-094-X.
* mit [[Wikipedia:Christoph Herrmann|Christoph Herrmann]], Jochen W. Rieger und Silke Schicktanz: ''Bewusstsein. Philosophie, Neurowissenschaften, Ethik'' (= ''UTB'' 2686). Fink, München u. a. 2005, ISBN 3-7705-4185-5.
* mit Michael Schütte und Alexander Staudacher: ''Begriff, Erklärung, Bewusstsein. Neue Beiträge zum Qualia-Problem.'' Mentis, Paderborn 2007, ISBN 978-3-89785-395-9.


Englisch:
=== Tonträger ===
* {{Literatur
*2009 ''Die Zukunft der Hirnforschung''. Vorlesung. Audio-CD. Komplett-Media, Grünwald. ISBN 978-3-8312-6405-6
  |Autor=James Bjorken, Sidney Drell
  |Titel=Relativistische Quantenfeldtheorie
  |Verlag=BI-Wissenschaftsverlag
  |Ort=Mannheim, Zürich
  |Datum=1993
  |ISBN=3-411-00101-1
  |Originaltitel=Relativistic Quantum Fields
  |Originalsprache=en
  |Übersetzer=J. Benecke, D. Maison, E. Riedel}}
* Claude Itzykson und Jean-Bernard Zuber: ''Quantum field theory''. Dover 2006, ISBN 978-0-486-44568-7.
* {{Literatur
  |Autor=Michio Kaku
  |Titel=Quantum field theory: a modern introduction
  |TitelErg=
  |Verlag=Oxford University Press
  |Ort=New York, Oxford
  |Datum=1993
  |ISBN=978-0-19-509158-8
  |Sprache=en}}
* {{Literatur
  |Autor=Michael Peskin und Daniel Schröder
  |Titel=Introduction to Quantum Field Theory
  |Verlag=Westview Press
  |Ort=Boulder, Col.
  |Datum=2007
  |ISBN=978-0-201-50397-5
  |Sprache=en}}
* Franz Mandl und Graham Shaw: ''Quantum field theory''. Wiley 1993, ISBN 978-0-471-94186-6.
** Deutsche Ausgabe: ''Quantenfeldtheorie.'' Übersetzt von Ralf Bönisch. Aula 1993, ISBN 978-3-89104-532-9.
* Lewis Ryder: ''Quantum field theory''. Cambridge 1996, ISBN 978-0-521-47814-4.
* Matthew D. Schwartz: ''Quantum Field Theory and the Standard Model''. Cambridge 2013, ISBN 978-1-107-03473-0.
* Steven Weinberg: ''The Quantum Theory of Fields''. 3 Bände, Cambridge University Press 1995, 2005 (Band 3 zu Supersymmetrie), Band 1 ISBN 978-0-521-67053-1, Band 2 ISBN 978-0-521-67054-8.
* {{Literatur
  |Autor=Anthony Zee
  |Titel=Quantum field theory in a nutshell
  |Verlag=Princeton University Press
  |Ort=Princeton
  |Datum=2003
  |ISBN=978-0-691-01019-9
  |Kapitel=
  |Seiten=
  |Spalten=
  |Sprache=en}}


Speziellere und verwandte Themen
== Weblinks ==
* Aitchison, Hey: ''Gauge theories in particle physics''. 2 Bände. 3. Auflage. IOP Publishing, Bristol 2003, 2004
* {{DNB-Portal|112706878}}
* N.D. Birrell, Paul Davies: ''Quantum fields in curved space.'' Cambridge Univ. Press, Cambridge 1984, ISBN 0-521-27858-9
*[http://www.perlentaucher.de/autoren/2042.html Rezensionsnotizen zu Pauens Büchern]
* James Glimm, Arthur Jaffe: ''Quantum physics - a functional integral point of view''. 2. Auflage. Springer, 1987, ISBN 978-0-387-96477-5
*[http://www.michael-pauen.de/ Pauens Homepage]
* Hermann Haken, ''Quantenfeldtheorie des Festkörpers'', Stuttgart, Teubner 1993
*[http://www.spektrum.de/rezension/buchkritik-zu-die-natur-des-geistes/1414158 Rezension zu "Die Natur des Geistes" von Eckart Löhr]
* Claude Itzykson, Jean-Michel Drouffe: ''Statistical field theory''. 2 Bände. Cambridge University Press, 1989 (auch Anwendungen in statistischer Mechanik)
* {{Literatur
  |Autor=Richard Mattuck
  |Titel=A guide to Feynman diagrams in the many body problem
  |Verlag=Dover Publications
  |Ort=New York
  |Datum=1992
  |ISBN=0-486-67047-3
  |Sprache=en}}
* Jean Zinn-Justin: ''Quantum field theory and critical phenomena''. Clarendon Press, Oxford u.&nbsp;a. 2003, ISBN 0-19-850923-5 (Eine sehr umfangreiche Darstellung, die beiden Gesichtspunkten gerecht wird)


== Weblinks ==
{{Normdaten|TYP=p|GND=112706878|LCCN=n/92/18672|VIAF=61709904}}
* {{SEP|http://plato.stanford.edu/entries/quantum-field-theory/}}
* [http://web.mit.edu/redingtn/www/netadv/Xfieldtheo.html Links zu Skripten und Aufsätzen, engl.] mit.edu
* [http://www.damtp.cam.ac.uk/user/tong/qft.html David Tong: Lectures on Quantum Field Theory] cam.ac.uk
*{{Webarchiv|wayback=20140715032043|url=http://www.physik.rwth-aachen.de/gemeinsame-einrichtungen/physikbibliothek/skripte/|text=Links zu deutschsprachigem Skripten über die QFT}} Uni Aachen, abgerufen am 14. Juli 2014


[[Kategorie:Quantenfeldtheorie|!]]
{{SORTIERUNG:Pauen, Michael}}
[[Kategorie:Quantenphysik]]
[[Kategorie:Philosoph (20. Jahrhundert)]]
[[Kategorie:Philosoph (21. Jahrhundert)]]
[[Kategorie:Vertreter der Philosophie des Geistes]]
[[Kategorie:Deutscher]]
[[Kategorie:Geboren 1956]]
[[Kategorie:Mann]]


{{Wikipedia}}
{{Wikipedia}}

Version vom 18. Oktober 2018, 22:18 Uhr

Michael Pauen (* 19. Februar 1956 in Krefeld) ist ein deutscher Philosoph und Professor an der Humboldt-Universität Berlin.

Werdegang

Die Hauptarbeitsgebiete von Michael Pauen sind die Philosophie des Geistes und die Kulturphilosophie. Er studierte in Marburg, Frankfurt am Main und Hamburg und war Visiting Professor am Institute for Advanced Study in Amherst, Massachusetts, Fellow an der Cornell University und am Hanse-Wissenschaftskolleg in Delmenhorst. 1997 erhielt er den Ernst-Bloch-Förderpreis.

In der Philosophie des Geistes hat sich Pauen insbesondere durch eine Argumentation für die Identitätstheorie hervorgetan. Diese läuft auf die Gleichsetzung von mentalen und neuronalen Zuständen hinaus. Die Identitätstheorie wurde in den 50er Jahren durch Ullin Place und John Smart entwickelt. Sie wurde schnell unpopulär, da umstritten ist, ob sie mit der multiplen Realisierung vereinbar ist.

Pauen vertritt eine kompatibilistische Position in der Freiheitsdebatte. Er behauptet also, dass sich Freiheit und Determinismus nicht ausschließen. Seine Position ähnelt dabei den Thesen von Ansgar Beckermann, Peter Bieri und Daniel Dennett.

Pauens kulturphilosophische Schriften setzen sich insbesondere mit der Tradition des Kulturpessimismus auseinander.

Literatur

Monographien

  • Schellengeklingel oder Offenbarung. Rationalität und ästhetische Lust in deutschen Kunsttheorien bis zur Moderne (= Kunstwissenschaft – Theorie und Methode. Bd. 1). Lit, Münster u. a. 1991, ISBN 3-88660-771-2 (Zugleich: Marburg, Universität, Dissertation, 1989).
  • Dithyrambiker des Untergangs. Gnostizismus in Ästhetik und Philosophie der Moderne. Akademie Verlag, Berlin 1994, ISBN 3-05-002659-6.
  • Pessimismus. Geschichtsphilosophie, Metaphysik und Moderne von Nietzsche bis Spengler. Akademie Verlag, Berlin 1997, ISBN 3-05-003094-1.
  • mit Karl Hoheisel: Vorträge aus der Tagung: Gnosis und die Spiritualität der Postmoderne. (Zur Einschätzung moderner Strömungen als gnostisch).(= Hofgeismarer Vorträge. Bd. 7, ISSN 0931-0398). Evangelische Akademie, Hofgeismar 1997.
  • Das Rätsel des Bewusstseins. Eine Erklärungsstrategie. Mentis, Paderborn 1999, ISBN 3-89785-087-7.
  • Grundprobleme der Philosophie des Geistes. Eine Einführung (= Fischer 14568). Fischer-Taschenbuch-Verlag, Frankfurt am Main 2001, ISBN 3-596-14568-6.
  • Illusion Freiheit? Mögliche und unmögliche Konsequenzen der Hirnforschung. S. Fischer, Frankfurt am Main 2004, ISBN 3-10-061910-2.
  • Was ist der Mensch? Die Entdeckung der Natur des Geistes. Deutsche Verlags-Anstalt, München 2007, ISBN 978-3-421-04224-8.
  • mit Gerhard Roth: Freiheit, Schuld und Verantwortung. Grundzüge einer naturalistischen Theorie der Willensfreiheit (= Edition Unseld. 12). Suhrkamp, Frankfurt am Main 2008, ISBN 978-3-518-26012-8.
  • mit Harald Welzer: Autonomie. Eine Verteidigung. S. Fischer, Frankfurt a. M. 2015, ISBN 978-3-10-002250-9.
  • Die Natur des Geistes, S. Fischer, Frankfurt am Main 2016, ISBN 978-3-10-002408-4.
  • Die weitverbreitete Vorstellung, eine angemessene Beschreibung phänomenalen Bewusstseins könne nur aus der Erste-Person-Perspektive gelingen, ist falsch in: Matthias Eckoldt Kann sich das Bewusstsein bewusst sein? Carl-Auer, Heidelberg 2017, ISBN 978-3-8497-0202-1

Herausgeberschaft

  • mit Heiner F. Klemme, Bernd Ludwig und Werner Stark: Aufklärung und Interpretation. Studien zur Philosophie Kants und ihrem Umkreis. Tagung aus Anlaß des 60. Geburtstags von Reinhard Brandt. Königshausen & Neumann, Würzburg 1999, ISBN 3-8260-1630-0.
  • mit Gerald Funk und Gert Mattenklott: Ästhetik des Ähnlichen. Zur Poetik und Kunstphilosophie der Moderne (= Fischer 15003). Fischer-Taschenbuch-Verlag, Frankfurt am Main 2001, ISBN 3-596-15003-5.
  • mit Gerhard Roth: Neurowissenschaften und Philosophie. Eine Einführung (= UTB 2208). Fink, Stuttgart ISBN 3-8252-2208-X.
  • mit Achim Stephan: Phänomenales Bewusstsein – Rückkehr der Identitätstheorie? Mentis, Paderborn 2002, ISBN 3-89785-094-X.
  • mit Christoph Herrmann, Jochen W. Rieger und Silke Schicktanz: Bewusstsein. Philosophie, Neurowissenschaften, Ethik (= UTB 2686). Fink, München u. a. 2005, ISBN 3-7705-4185-5.
  • mit Michael Schütte und Alexander Staudacher: Begriff, Erklärung, Bewusstsein. Neue Beiträge zum Qualia-Problem. Mentis, Paderborn 2007, ISBN 978-3-89785-395-9.

Tonträger

Weblinks


Dieser Artikel basiert (teilweise) auf dem Artikel Michael Pauen aus der freien Enzyklopädie Wikipedia und steht unter der Lizenz Creative Commons Attribution/Share Alike. In Wikipedia ist eine Liste der Autoren verfügbar.