Kristallstrukturanalyse und Datei:318px-Magi (1).jpg: Unterschied zwischen den Seiten

Aus AnthroWiki
(Unterschied zwischen Seiten)
imported>Odyssee
Keine Bearbeitungszusammenfassung
 
(== Beschreibung == Importing file)
Markierung: Serverseitig hochgeladene Datei
 
Zeile 1: Zeile 1:
[[Datei:DNA-X-Ray-Wilkins.jpg|mini|left|Fig. 1: Eine der ersten Aufnahmen der unter der Leitung von [[Wikipedia:Maurice Wilkins|Maurice Wilkins]] durchgeführten [[Röntgenstrukturanalyse]] der [[Wikipedia:DNA|DNA]], für die ihm 1962 zusammen mit [[Wikipedia:James Watson|James Watson]] und [[Wikipedia:Francis Crick|Francis Crick]] der [[Wikipedia:Nobelpreis für Physiologie oder Medizin|Nobelpreis für Physiologie oder Medizin]] verliehen wurde.]]
== Beschreibung ==
[[Datei:Freezed XRD.jpg|mini|Modernes Röntgenstrahlen-Diffraktometer bei der Arbeit]]
Importing file
[[Datei:Tyrosin.png|mini|Die Struktur von Proteinen wird durch Röntgenstrukturanalalyse aufgeklärt, indem die Aminosäuresequenz in die ermittelte Elektronenverteilung (weißes Gitter) so eingepasst wird, bis es plausibel scheint, dass die vorgeschlagene Struktur die gemessene Elektronenverteilung erzeugen kann.]]
[[Datei:DNA orbit animated.gif|mini|hochkant=1|Strukturmodell einer DNA-Helix in B-Konformation. Die [[Stickstoff]] (blau) enthaltenden [[Wikipedia:Nukleinbasen|Nukleinbasen]] liegen waagrecht zwischen zwei Rückgratsträngen, welche sehr reich an [[Sauerstoff]] (rot) sind. [[Kohlenstoff]]atome sind grün dargestellt.]]
 
Die '''Kristallstrukturanalyse''' ist ein [[physik]]alisches Verfahren, um die innere [[Struktur]] eines [[Kristall]]s [[Empirie|empirisch]] zu ermitteln. Sie bedient sich dabei der [[Beugung (Physik)|Beugung]] geeigneter kurzwelliger [[Strahlung]] am [[Kristallgitter]]. Meist wird dabei [[Röntgenstrahlung]] verwendet, weshalb man dann auch von '''Röntgenstrukturanalyse''' spricht. Aus der Winkelverteilung der Beugungsmaxima in dem beobachteten Beugungsmuster kann die [[Kristallstruktur]] bzw. die Verteilung der [[Wikipedia:Elektronendichte|Elektronendichte]] in der [[Elementarzelle]] berechnet werden. [[Einkristall]]e, die ein durchgehend einheitliches, homogenes Kristallgitter bilden, aber oft nur schwer in ausreichender Größe gezüchtet werden können, sind für die Strukturanalyse am besten geeignet. Leichter herzustellende polykristalline Aggregate können heutzutage auch verwendet werden, liefern aber weniger detailreiche Bilder.
 
Grundsätzlich kann aus der Verteilung der Elektronen auch die [[Raum|räumlich]]-[[Geometrie|geometrische]] Anordnung der [[Atom]]e bzw. die [[Molekularstruktur]] auch hochkomplexer [[Molekül]]e, z.B. vieler biologisch aktiver [[Protein]]e, erschlossen werden. Das vermutlich bekannteste Beispiele dafür ist die am 25. April 1953 von [[Wikipedia:James Watson|James Watson]] und [[Wikipedia:Francis Crick|Francis Crick]] in ihrem berühmten, kaum mehr als eine Seite langen Artikel ''[[Wikipedia:Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid|Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid]]''.<ref name="WatsonCrick1953">J. D. Watson, F. H. Crick: [http://www.nature.com/physics/looking-back/crick/index.html ''Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid.''] In: ''[[Wikipedia:Nature|Nature]].'' Band 171, Nr. 4356, 1953, S. 737–738. PMID 13054692 [http://www.nature.com/nature/dna50/watsoncrick.pdf (Volltext, PDF; 368&nbsp;kB)]</ref> in der Zeitschrift [[Wikipedia:Nature|Nature]] veröffentlichte [[Wikipedia:Desoxyribonukleinsäure|DNA]]-Struktur, zu deren Bestimmung sie sich hauptsächlich auf die Röntgenbeugungsdaten von [[Wikipedia:Maurice Wilkins|Maurice Wilkins]] und [[Wikipedia:Rosalind Franklin|Rosalind Franklin]] stützten. In einem kreativ suchenden Prozess bauten sie immer wieder neue Strukturmodelle, die zu den Beugungsmustern passten, bis sie schließlich auf die geniale [[Idee]] der berühmten [[Wikipedia:Doppelhelix|Doppelhelix]] stießen, für die ihnen 1962 zusammen mit Wilkins der [[Wikipedia:Nobelpreis für Physiologie oder Medizin|Nobelpreis für Physiologie oder Medizin]] verliehen wurde.
 
Wilkins schrieb dazu in seinem Nobelpreis-Vortrag:
 
{{LZ|Diese Forschung wurde von Randall geleitet, der
bei W. L. Bragg studiert und mit Röntgenbeugung gearbeitet hatte.
Fast sofort erhielt Gosling sehr ermutigende Beugungsbilder
(siehe Abb. 1). Ein Grund für diesen Erfolg war, dass wir die Fasern feucht hielten. Wir
erinnerten uns, dass, um detaillierte Röntgenmuster von Proteinen zu erhalten, Bernal
Proteinkristalle in ihrer Mutterlauge gehalten hatte. Es schien wahrscheinlich, dass die
Konfiguration aller Arten von wasserlöslichen biologischen Makromolekülen
abhängig von ihrer wässrigen Umgebung sein würden. Wir erhielten gute Beugungsmuster
mit DNA von Signer und Schwander, die Singer nach
London zu einem Faraday Society Meeting über Nukleinsäuren mitgebracht und großzügig
verteilt hatte, so dass alle Arbeiter mit ihren verschiedenen Techniken daran arbeiten konnten.<ref>Im englischen Original:<br>
„This research was directed by Randall, who
had been trained under W. L. Bragg and had worked with X-ray diffraction.
Almost immediately, Gosling obtained very encouraging diffraction patterns
(see Fig. 1). One reason for this success was that we kept the fibres moist. We
remembered that, to obtain detailed X-ray patterns from proteins, Bernal
had kept protein crystals in their mother liquor. It seemed likely that the
configuration of all kinds of water-soluble biological macromolecules would
depend on their aqueous environment. We obtained good diffraction patterns
with DNA made by Signer and Schwander which Singer brought to
London to a Faraday Society meeting on nucleic acids and which he generously
distributed so that all workers, using their various techniques, could
study it.“<br>(Wilkins: ''Nobel Lecture'', December 11, 1962 [https://www.nobelprize.org/nobel_prizes/medicine/laureates/1962/wilkins-lecture.pdf pdf])</ref>|Wilkins, S. 757}}
 
Man muss dabei allerdings bedenken, dass die gewonnenen Erkenntnisse nur im Rahmen des makroskopischen Kristallgefüges gültig sind und streng genommen nicht auf freie Moleküle in [[Flüssigkeit]]en oder [[Gas]]en übertragen werden können. Darauf hatte schon [[Rudolf Steiner]] hingewiesen:
 
{{GZ|Spiritisten berufen sich darauf, daß sie Geister fotografiert haben. Das Fotografieren ist ein äußerer Vorgang, und ich will mich hier nicht weiter darüber verbreiten, ob man Geister fotografieren kann oder nicht. Aber mit nicht mehr Recht als die Spiritisten behaupten, daß sie Geister fotografiert haben, berufen sich heute gewisse Physiker darauf, daß sie die Konfiguration der Atome fotografiert haben. Gewiß, man kann Kristalle mit Röntgenstrahlen bewerfen, man kann diese Röntgenstrahlen zur Reflexion, die reflektierten Strahlen zur Interferenz bringen und dann fotografieren, und man kann behaupten, man fotografiere die Konfiguration der Atome. Die wesentliche Frage ist nur: Fotografiert man hier wirklich die atomistischen Agenzien oder fotografiert man gewisse Wirkungen, die vom Makrokosmischen herkommen und die sich nur an den Punkten zeigen, an denen man glaubt, daß die Atome vorhanden sind? Es kommt überall darauf an, daß man Denk- und Vorstellungsarten findet, die in der richtigen Weise von den Erscheinungen zu dem Wesen der Dinge zu gehen vermögen.|73a|43}}
 
Tatsächlich darf man sich die Moleküle [[an sich]] nicht im naiven Sinn als aus Atomen ''zusammengesetzte'' [[Objekt]]e mit einer definierten räumlichen [[Form]] vorstellen, so nützlich dieses Konzept auch als ''Näherungslösung'' für viele praktische Probleme sein mag, solange man sich ihrer Grenzen bewusst bleibt. Die moderne [[Quantentheorie]] spricht hier eine eindeutige Sprache, weshalb der [[Chemiker]] [[Hans Primas]] auch nachdrücklich betont:
 
{{LZ|Moleküle, Atome, Elektronen,
Quarks oder Strings sind aber keine Bausteine der Materie, sie sind nicht
Ge-fundenes, sondern Er-fundenes, das heisst Konstruktionen derer, welche
die materielle Realität erforschen. Von dem ursprünglichen Begriff der Materie
ist in der heutigen Physik nichts übriggeblieben.|Primas 1992, S. 50}}
 
Dass man einem Molekül aus quantenmechanischer Sicht keine definierte [[Gestalt]] zuschreiben kann, betonte auch ''Richard Guy Woolley'' in seinem Artikel «''Must a molecule have shape?''»:
 
{{LZ|Die Quantenmechanik kann ziemlich genau vorhersagen, wie sich die Energie eines Moleküls ändern kann, aber sie sagt streng genommen nichts über die Form eines Moleküls. Das ist eine erstaunliche Aussage für einen Chemiker, weil es die räumlichen Beziehungen der chemisch gebundenen Atomen sind, die am wichtigsten sind für das Verständnis dafür, wie Moleküle mit anderen reagieren. Chemiker, Physiker und Molekularbiologen sollten sich daher überlegen, wie sie die Quantenmechanik nutzen und was sie mit Atomen und Molekülen eigentlich meinen.|Richard Guy Woolley in ''New Scientist'', 22. Oktober 1988, S. 53<ref>Im englischen Original:<br>„Quantum mechanics can predict fairly accurately the way
the energy of a molecule may change, but strictly speaking it
says nothing about the shape of a molecule. This is an astonishing
statement for a chemist because it is the spatial
relationships of chemically bonded atoms that is most
important in understanding how molecules react with each
other. Chemists, physicists and molecular biologists should
reconsider now how they use quantum mechanics, and what
they mean by atoms and molecules.“</ref>}}
 
== Siehe auch ==
 
* {{WikipediaDE|Kristallstrukturanalyse}}
 
== Literatur ==
 
* Maurice Wilkins: ''The molecular configuration of nucleic acids'', Nobel Lecture, December 11, 1962
* Werner Massa: ''Kristallstrukturbestimmung'', Vieweg + Teubner Verlag, 6. Auflage, Wiesbaden 2009, ISBN 978-3-8348-0649-9
* [[Hans Primas]]: ''Chemistry, Quantum Mechanics and Reductionism: Perspectives in Theoretical Chemistry'', Springer Verlag 1983, ISBN 978-3540128380
* Hans Primas: ''Umdenken in der Naturwissenschaft'' in: ''Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich'' (1992) 137/l, S. 41-62 (genehmigter Nachdruck aus «GAIA; Ecological Perspectives in Science, Humanities and Economics» (1992) 1, l, 5-15 [http://www.ngzh.ch/archiv/1992_137/137_1/137_5.pdf pdf]
* Richard Guy Woolley: ''Must a molecule have shape?'' in: ''New Scientist'', 22. Oktober 1988, p. 53-57 [https://www.researchgate.net/profile/Richard_Woolley4/publication/314751850_Must_a_molecule_have_shape/links/58c5699045851538eb8af944/Must-a-molecule-have-shape.pdf?origin=publication_detail pdf]
* Rudolf Steiner: ''Fachwissenschaften und Anthroposophie'', [[GA 73a]] (2005), ISBN 3-7274-0735-2 {{Vorträge|073a}}
 
{{GA}}
 
== Einzelnachweise ==
 
<references />
 
[[Kategorie:Physik]] [[Kategorie:Chemie]]

Aktuelle Version vom 11. August 2022, 11:10 Uhr

Beschreibung

Importing file