Plattentektonik und Kategorie:Physikochemiker: Unterschied zwischen den Seiten

Aus AnthroWiki
(Unterschied zwischen Seiten)
imported>Joachim Stiller
 
imported>Joachim Stiller
Keine Bearbeitungszusammenfassung
 
Zeile 1: Zeile 1:
[[Datei:Tectonic plates de.png|mini|hochkant=1.5|Weltkarte mit vereinfachter Darstellung der Lithosphärenplatten]]
[[Kategorie:Physikochemiker|!]]
[[Datei:Global plate motion.jpg|mini|hochkant=1.5|Die [[Plattenkinematik|Kinematik]] der Platten. Die dargestellten Richtungen und Geschwindigkeiten der Drift wurden aus [[Global Positioning System|GPS]]-Rohdaten ermittelt.]]
[[Kategorie:Chemiker nach Fachgebiet]]
 
[[Kategorie:Physiker nach Fachgebiet]]
'''Plattentektonik''' ist ursprünglich die Bezeichnung für eine [[Theorie]] der [[Geowissenschaft]]en über die großräumigen [[Tektonik|tektonischen]] Vorgänge in der äußeren Erdhülle, der [[Lithosphäre]] ([[Erdkruste]] und oberster [[Erdmantel]]), die heute zu den grundlegenden Theorien über die [[endogene Dynamik]] der [[Erde]] gehört. Sie besagt, dass die äußere Erdhülle in Lithosphärenplatten (umgangssprachlich als '''Kontinentalplatten''' bezeichnet) gegliedert ist, die dem übrigen Oberen Erdmantel aufliegen und darauf umherwandern (→ [[Kontinentaldrift]]).
 
Vorrangig bezeichnet der Begriff ''Plattentektonik'' heute jedoch nicht mehr die Theorie, sondern das mittlerweile in weiten Teilen direkt oder indirekt nachgewiesene Phänomen als solches. Selbiges kann als an der [[Erdoberfläche]] auftretender Ausdruck der [[Mantelkonvektion]] im Erdinneren aufgefasst werden, hat aber noch weitere Ursachen.
 
Zu den mit der Plattentektonik verbundenen Prozessen und Erscheinungen zählen die Entstehung von [[Faltengebirge]]n ([[Orogenese]]) durch den Druck zusammenstoßender Kontinente sowie die häufigsten Formen von [[Vulkanismus]] und [[Erdbeben]].
 
[[Datei:Plate tectonics map.gif|mini|hochkant=1.5|[[Reliefkarte]] der Erdoberfläche mit den Lithosphärenplatten und Angaben zur [[Geodynamik]]]]
 
== Überblick ==
{{Anker|Kontinentalplatte}}
 
=== Die Lithosphärenplatten ===
 
Grundlegend für die Plattentektonik ist die fragmentierte Struktur der [[Lithosphäre]]. Sie ist in sieben große '''Lithosphärenplatten''' gegliedert, die auch als '''tektonische Platten''' oder (vor allem von Nicht-Geologen) als '''Kontinentalplatten''' bezeichnet werden:
* die [[Nordamerikanische Platte]] und die [[Eurasische Platte]],
* die [[Südamerikanische Platte]] und die [[Afrikanische Platte]],
* die [[Antarktische Platte]] und die [[Australische Platte]],
* sowie die [[Pazifische Platte]], die einzige der Großplatten ohne nennenswerten Anteil an [[Kontinentale Erdkruste|kontinentaler Kruste]].
 
Daneben gibt es noch eine Reihe kleinerer Platten wie beispielsweise die [[Nazca-Platte]], die [[Indische Platte]], die [[Philippinische Platte]], die [[Arabische Platte]], die [[Karibische Platte]], die [[Cocosplatte]], die [[Scotia-Platte]] sowie weitere [[Mikroplatte]]n, über deren Abgrenzung jedoch teilweise noch wenig bekannt ist oder deren Existenz bislang nur vermutet wird.
 
=== Die Bewegungen der Platten ===
Die Plattengrenzen werden an der [[Erdoberfläche]] meist entweder durch [[Mittelozeanischer Rücken|mittelozeanische Rücken]] oder [[Tiefseerinne]]n repräsentiert. An den Rücken driften die benachbarten Platten auseinander (''[[#Konstruktive (Divergierende) Plattengrenzen|divergierende Plattengrenze]]''), wodurch [[basalt]]isches [[Magma]] aus dem Oberen [[Erdmantel]] emporsteigt und neue ozeanische Lithosphäre gebildet wird. Dieser Prozess wird auch als [[Ozeanbodenspreizung]] oder ''Seafloor Spreading'' bezeichnet. Er geht mit intensivem, meist unterseeischem Vulkanismus einher.
 
An anderen Plattengrenzen taucht im Gegenzug ozeanische Lithosphäre unter eine angrenzende (ozeanische oder kontinentale) Platte tief in den Erdmantel ab ([[Subduktion]]). An diesen ''[[#Destruktive (Konvergierende) Plattengrenzen|konvergierenden Plattengrenzen]]'' befinden sich die Tiefseerinnen. Entwässerungsprozesse in der abtauchenden Platte führen in der oben bleibenden Platte ebenfalls zu ausgeprägtem Vulkanismus.
 
Die eigentlichen Kontinentalblöcke oder Kontinentalschollen aus vorwiegend [[granit]]ischem Material werden – zusammen mit den umgebenden Ozeanböden sowie dem jeweils darunter befindlichen [[Lithosphärischer Mantel|lithosphärischen Mantel]] – wie auf einem langsamen Fließband von den Spreizungszonen weg und zu den Subduktionszonen hin geschoben. Nur eine [[#Kollisionstyp|Kollision]] zweier Kontinentalblöcke kann diese Bewegung aufhalten.
 
Da die kontinentale Kruste [[Spezifisches Gewicht|spezifisch leichter]] ist als die ozeanische Kruste, taucht sie an einer Subduktionszone nicht zusammen mit der ozeanischen Platte ab, sondern wölbt sich stattdessen zu einem Gebirgszug auf (Orogenese). Hierbei kommt es zu komplexen [[Kontinuumsmechanik|Deformationsvorgängen]]. Zwischen der Indischen und der Eurasischen Platte findet eine Kontinent-Kontinent-Kollision statt, die ebenfalls zur Gebirgsbildung führte ([[Himalaya]]).
 
Darüber hinaus können zwei Platten auch horizontal aneinander vorbeigleiten (''[[#Konservative Plattengrenzen (Transform-Störungen)|konservative Plattengrenze]]''). In diesem Fall wird die Plattengrenze als [[Transformstörung]] (Transformverwerfung) bezeichnet.
 
Das Lager, auf dem die Lithosphärenplatten gleiten, befindet sich im Grenzbereich zwischen der starren Lithosphäre und der darunterliegenden, extrem zäh fließenden [[Asthenosphäre]] (engl.: ''Lithosphere-Asthenosphere Boundary'', LAB). Die Ergebnisse seismischer Untersuchungen des Ozeanbodens im Westpazifik lassen darauf schließen, dass im Bereich der LAB zwischen 50 und 100&nbsp;km Tiefe eine geringviskose Schicht existiert, die die mechanische Entkopplung der Lithosphäre von der Asthenosphäre erlaubt. Als Grund für die geringe Viskosität wird angenommen, dass der Mantel in diesem Bereich entweder teilweise aufgeschmolzen ist oder einen hohen Anteil flüchtiger Stoffe (hauptsächlich Wasser) aufweist.<ref name="kawakatsu">Hitoshi Kawakatsu, Prakash Kumar, Yasuko Takei, Masanao Shinohara, Toshihiko Kanazawa, Eiichiro Araki, Kiyoshi Suyehiro: ''Seismic Evidence for Sharp Lithosphere-Asthenosphere Boundaries of Oceanic Plates.'' In: ''Science.'' 324, Nr.&nbsp;5926, 2009, S.&nbsp;499–502, [[doi:10.1126/science.1169499]] (alternativer Volltextzugriff: [http://geophysics.wustl.edu/seminar/2009_Kawakatsu_Science.pdf Washington University in St. Louis]).</ref><ref name="stern">T. A. Stern, S. A. Henrys, D. Okaya, J. N. Louie, M. K. Savage, S. Lamb, H. Sato, R. Sutherland, T. Iwasaki: ''A seismic reflection image for the base of a tectonic plate.'' In: ''Nature.'' 518, 2015, S.&nbsp;85–88, [[doi:10.1038/nature14146]].</ref>
 
Während früher die [[Reibung]] des konvektiven Mantels (engl.: ''convective drag'') an der Basis der Lithosphärenplatten als die wichtigste Triebkraft der Plattentektonik betrachtet wurde, gelten heute eher die von den Platten selbst ausgehenden Kräfte als die entscheidenden. Der sogenannte ''Ridge Push'' („Rückendruck“) geht von der jungen, warmen, auf dem Mantel „aufschwimmenden“ und daher hoch aufragenden Kruste der Mittelozeanischen Rücken aus, die einen horizontal von den Spreizungszonen weg gerichteten Druck erzeugt. Der ''Slab Pull'' („Plattenzug“) ist der Zug, den alte, kalte Lithosphäre erzeugt, wenn sie an Subduktionszonen in den konvektiven Erdmantel eintaucht. Durch Gesteinsumwandlungen subduzierter ozeanischer Kruste in größerer Manteltiefe erhöht sich die Dichte des Krustengesteins und bleibt höher als die Dichte des sie umgebenden Mantelmaterials. Dadurch kann der Zug auf den noch nicht subduzierten Teil der entsprechenden Lithosphärenplatte aufrechterhalten werden.<ref>Kurt Stüwe: ''Geodynamics of the Lithosphere: An Introduction.'' 2nd edition. Springer, Berlin·Heidelberg 2007, ISBN 978-3-540-71236-7, S.&nbsp;253&nbsp;ff.</ref>
 
== Geschichte der Theorie der Plattentektonik ==
=== Kontinentaldrift ===
{{Hauptartikel|Kontinentaldrift}}
[[Datei:Snider-Pellegrini Wegener fossil map-de.svg|mini|hochkant=1.5|Die paläobiogeographischen Verbreitungsgebiete von ''[[Cynognathus]],'' ''[[Mesosaurus]],'' ''[[Glossopteridales|Glossopteris]]'' und ''[[Lystrosaurus]]'' (hier stark schematisch dargestellt und nicht mit den tatsächlichen, anhand der Fossilfundstellen rekonstruierten Verbreitungsgebieten identisch) gehören zu den Belegen für die frühere Existenz von [[Gondwana]], dem Südteil der Wegener’schen Pangaea, und damit auch für die Kontinentaldrift.]]
Nachdem einige Forscher bereits ähnliche Gedanken geäußert hatten, war es vor allem [[Alfred Wegener]], der in seinem 1915 veröffentlichten Buch ''Die Entstehung der Kontinente und Ozeane'' aus der teilweise sehr genauen Passung der Küstenlinien auf beiden Seiten des Atlantiks folgerte, dass die heutigen Kontinente Teile eines großen [[Urkontinent]]s gewesen sein müssen, der in der erdgeschichtlichen Vergangenheit auseinandergebrochen war. Die Passung ist noch genauer, wenn man nicht die Küstenlinien, sondern die [[Schelf]]ränder, das heißt die untermeerischen Begrenzungen der Kontinente betrachtet. Wegener nannte diesen Urkontinent [[Pangaea]] und den Prozess des Auseinanderbrechens und Auseinanderstrebens seiner Bruchstücke ''Kontinentaldrift''. Wegener sammelte zwar viele weitere Belege für seine Theorie, jedoch konnte er keine überzeugenden Ursachen für die Kontinentaldrift benennen. Eine vielversprechende Hypothese kam von [[Arthur Holmes]] (1928), der vorschlug, dass Wärmeströme im Erdinneren genügend Kraft erzeugen könnten, um die Erdplatten zu bewegen. Zu diesem Zeitpunkt konnte sich seine Hypothese jedoch nicht durchsetzen.
 
=== Ab 1960: Ozeanböden, Subduktion, Erdmessung ===
Der [[Paradigmenwechsel]] zum [[Mobilismus]] setzte deshalb erst etwa um 1960 vor allem durch die Arbeiten von [[Harry Hammond Hess]], [[Robert S. Dietz]], [[Bruce C. Heezen]], [[Marie Tharp]], [[John Tuzo Wilson]] und [[Samuel Warren Carey]] ein, als man grundlegend neue Erkenntnisse über die Geologie der Ozeanböden erlangte.
[[Datei:Oceanic.Stripe.Magnetic.Anomalies.Scheme.svg|mini|300px|Muster der mit wechselnder Polarität magnetisierten ozeanischen Kruste. a) vor 5 Mio. Jahren, b) vor 2–3 Mio. Jahren, c) heute]]
* Man erkannte zum Beispiel, dass die ''Mittelozeanischen Rücken'' [[vulkan]]isch aktiv sind und dass dort an langen Bruchspalten große Mengen basaltischer [[Lava]] austreten, meist in Form von [[Kissenlava]].
* Bei [[Erdmagnetfeld#Paläomagnetismus und die Umpolung des Erdmagnetfeldes|paläomagnetischen]] Messungen dieser Basalte entdeckte man, dass die wiederholte Umpolung des [[Erdmagnetfeld]]s im Laufe der Erdgeschichte ein spiegelsymmetrisches „Streifenmuster“ auf beiden Seiten des Mittelatlantischen Rückens erzeugt hatte.<ref>J. Heirtzler, X. Le Pichon, J. Baron: ''Magnetic anomalies over the Reykjanes Ridge.'' In: ''Deep Sea Research.'' 13, Nr. 3, 1966, S. 427–432, [[doi:10.1016/0011-7471(66)91078-3]].</ref>
* Außerdem erkannte man, dass die [[Sedimentgestein]]e, die die [[Tiefsee]]böden bedecken, in größerer Entfernung von den Mittelozeanischen Rücken auch immer mächtiger und älter werden.
Die einleuchtendste Erklärung für diese Phänomene war, dass der ständige Austritt basaltischen Magmas an den langgezogenen mittelozeanischen Bruchzonen Teil eines Prozesses ist, durch welchen der Ozeanboden in entgegengesetzte Richtungen auseinandergedrückt wird, sodass er sich im Laufe der Zeit immer weiter ausdehnt ([[Ozeanbodenspreizung|Seafloor Spreading]]).
 
Da es keine Anzeichen dafür gibt, dass sich der Radius der Erde im Laufe ihres Bestehens kontinuierlich vergrößert, wie es z.&nbsp;B. in Careys [[Expansionstheorie]] gefordert wurde, liegt der Gedanke nahe, dass die in Form ozeanischer Kruste neu gebildete Erdoberfläche an anderer Stelle wieder verschwinden muss. Dieser Ansatz wird durch die Tatsache gestützt, dass sich in den heutigen Ozeanen (abgesehen von tektonischen Sonderpositionen wie im Mittelmeer) keine Lithosphäre findet, die älter ist als 200 Millionen Jahre ([[Mesozoikum]]). Die Hälfte der Meeresböden aller Ozeane ist nicht einmal älter als 65 Millionen Jahre ([[Känozoikum]]). Dadurch wurde die ursprüngliche Vorstellung widerlegt, nach der die Ozeane uralte Vertiefungen seien, die sich zusammen mit den Kontinenten schon bei der Formung der ersten festen Kruste um die glutflüssige [[Urerde]] gebildet hatten. Stattdessen bestehen die Ozeanböden, verglichen mit den Kontinenten, aus geologisch außerordentlich jungen Gesteinen. Unter Berücksichtigung der kontinuierlichen Ozeanbodenbildung an den Mittelozeanischen Rücken, kann hieraus zudem der Rückschluss gezogen werden, dass vor dem Mesozoikum gebildete Ozeanböden wieder von der Erdoberfläche verschwunden sein müssen.
 
Als Ort des Verschwindens von ozeanischer Lithosphäre wurden in den 1970er Jahren die [[Tiefseerinne]]n erkannt, die vor allem den Pazifischen Ozean umgeben. Wegen der damit verbundenen starken seismischen und vulkanischen Aktivität wird diese Zone auch als [[Pazifischer Feuerring]] bezeichnet.
* [[Geophysik]]alische Messungen offenbarten dort schräg geneigte [[Seismik|seismische]] Reflexionsflächen ([[Benioff-Zone]]), an denen ozeanische Kruste unter kontinentale (oder andere ozeanische) Kruste geschoben wird und absinkt. Typisch für diese Zonen sind die ''tiefen Erdbeben'', deren Hypozentren in Tiefen von 320 bis 720&nbsp;km liegen können. Dieser Befund wird mit den Phasenumwandlungen der Minerale in der [[Subduktion|subduzierten]] Platte erklärt.
* Als Unterlage, auf der die Lithosphäre seitlich driften kann, gilt die rund 100&nbsp;km mächtige [[Asthenosphäre]]. Sie wird auch „Low-Velocity Zone“ (dt. „Zone langsamer Geschwindigkeit“) genannt, da sich die seismischen [[Seismische Welle#Raumwellen|P- und S-Wellen]] nur langsam durch sie hindurchbewegen. Die niedrigen Wellengeschwindigkeiten erklärt man sich durch eine generell geringere Festigkeit der Asthenosphäre gegenüber der Lithosphäre und dem tieferen [[Erdmantel]]. Hierbei scheint die oberste Schicht der Asthenosphäre mechanisch besonders schwach zu sein und eine Art Film zu bilden, auf dem die Lithosphäre gleiten kann.<ref name="kawakatsu" /><ref name="stern" />
 
Die neuen Methoden der [[Satellitengeodäsie]] und des [[Very Long Baseline Interferometry|VLBI]], die sich in den 1990ern der Zentimeter-Genauigkeit näherten, liefern einen direkten Nachweis der [[Kontinentaldrift]]. Die Geschwindigkeit der Ozeanboden-Spreizung beträgt einige Zentimeter pro Jahr, variiert aber zwischen den einzelnen Ozeanen. Die [[Geodäsie|geodätisch]] ermittelten Driftraten zwischen den großen Platten liegen zwischen 2 und 20&nbsp;cm pro Jahr und stimmen mit den [[geophysik]]alischen [[NUVEL]]-Modellen weitgehend überein.
 
Neben Wegeners Theorie der Kontinentaldrift enthält die Plattentektonik auch Elemente der [[Unterströmungstheorie]] von [[Otto Ampferer]] (siehe auch [[Geschichte der Geologie]], [[Permanenztheorie]]).
 
== Gebirgsbildung und Vulkanismus im Licht der Plattentektonik {{Anker|Plattengrenze}} ==
[[Datei:Plattengrenzen.png|mini|hochkant=1.5|Schematische Darstellung der Prozesse entlang der Plattengrenzen und wesentlicher damit einhergehender geologischer Erscheinungen]]
Im Gegensatz zu der klassischen [[Geosynklinale|Geosynklinal]]-Theorie geht man heute davon aus, dass die meisten gebirgsbildenden und vulkanischen Prozesse an die Plattenränder bzw. '''Plattengrenzen''' gebunden sind. Hier entstehen als Begleiterscheinungen der sich bewegenden Platten für den Menschen bedeutsame Naturphänomene wie Vulkanausbrüche, [[Erdbeben]] und [[Tsunami]]s.
 
Es gibt „einfache“ Plattengrenzen, an denen zwei tektonische Platten zusammentreffen und [[Triple Junction|Tripelpunkte]], an denen drei tektonische Platten zusammentreffen. Nicht an Plattengrenzen gebunden sind [[Hotspot (Geologie)|Hotspots]], die durch thermische Anomalien im unteren Erdmantel verursacht werden.
<div style="clear:both;"></div>
 
=== Konstruktive (Divergierende) Plattengrenzen ===
[[Datei:Bridge across continents iceland.jpg|mini|hochkant=1.5|Diese Brücke auf Island überspannt eine Bruchzone in jenem Gebiet, in dem sich die Nordamerikanische und die Eurasische Platte voneinander entfernen.]]
Das Auseinanderdriften zweier Platten nennt man ''Divergenz''. Hier entsteht neue Lithosphäre.
 
==== Mittelozeanische Rücken ====
{{Hauptartikel|Mittelozeanischer Rücken}}
Die Mittelozeanischen Rücken (MOR) werden (als sogenannte [[Schwelle (Geomorphologie)|Rücken und Schwellen]]) mit einer Gesamtlänge von rund 70.000&nbsp;km als die größten zusammenhängenden Gebirgssysteme des Planeten Erde angesehen.
 
Die Flanken der MOR steigen relativ sanft an. Die Kammregion weist oft über weite Strecken Einsenkungen auf – den ''Zentralen Graben''. An der Längsachse der MOR erfolgt die eigentliche Neubildung von Erdkruste bzw. Lithosphäre, indem dort große Mengen an größtenteils [[basalt]]ischem [[Magma]] ausschmelzen, aufsteigen und kristallisieren. Nur ein kleiner Bruchteil erreicht hierbei als [[Lava]] den Meeresboden. Die junge Lithosphäre mit den frisch auskristallisierten Krustengesteinen hat im Vergleich zu älterer Lithosphäre eine geringere Dichte. Dies ist ein Grund dafür, dass die MOR sich mehrere Tausend Meter über den benachbarten Ozeanboden erheben. Mit steigendem Alter der Lithosphäre steigt deren Dichte, weshalb der Ozeanboden mit wachsender Entfernung von der Längsachse der MOR zunehmend tiefer liegt. Quer zum Zentralgraben verlaufen Bruchzonen (siehe [[#Konservative Plattengrenzen (Transform-Störungen)|Konservative Plattengrenzen]]), an denen die einzelnen Abschnitte des MOR gegeneinander versetzt sind. Daher haben die MOR keine durchgehende Kammlinie.
 
Ein eigentümliches vulkanisches Phänomen, das an die Mittelozeanischen Rücken gebunden ist, sind die [[Schwarzer Raucher|Schwarzen und Weißen Raucher]] – [[hydrothermal]]e Schlote, an denen überhitztes, mineralgesättigtes Wasser austritt. Dabei kommt es an den Schwarzen Rauchern zur Ablagerung von Erzen, die dann sogenannte [[sedimentär-exhalative Lagerstätten]] bilden.
 
==== Intrakontinentale Gräben (Riftzonen) ====
{{Hauptartikel|Grabenbruch}}
Auch Riftzonen wie der [[Ostafrikanischer Graben|Ostafrikanische Graben]], die als die erste Phase einer Ozeanbildung aufgefasst werden können, sind mit vulkanischer Aktivität verbunden. Allerdings handelt es sich nicht um konstruktive Plattengrenzen im eigentlichen Sinn. Die Plattendivergenz wird hier zu einem Großteil durch das Einsinken und Verkippen kontinentaler Krustenblöcke ausgeglichen. Charakteristisch ist die Aufwölbung der umgebenden kontinentalen Kruste, die aus der Aufheizung und damit einhergehenden Dichteabnahme der ausgedünnten Lithosphäre resultiert und sich in Form herausgehobener [[Grundgebirge|Grundgebirgsmassive]] äußert, welche die ''Riftflankengebirge'' ''(Riftschultern)'' des Grabensystems bilden.
 
Grabensysteme wie der Ostafrikanische Graben entstehen durch die Tätigkeit sogenannter [[Manteldiapir]]e. Diese heizen die Lithosphäre auf, dünnen sie aus und wölben sie [[Dom (Geologie)|domartig]] auf. Die entstehenden Spannungen führen schließlich dazu, dass die Kruste nachgibt und sich dreistrahlige Grabensysteme, ausgehend von den domartigen Aufwölbungen, radial ausbreiten, wobei aufeinandergerichtete Riftstrahlen zusammenwachsen und ein langgestrecktes Grabensystem bilden. Die übrigen Äste des Riftsystems verkümmern. An den tiefreichenden Brüchen in der Kruste, die bei diesen Prozessen entstehen, steigt Magma auf, was für den typischen [[Alkaligestein|alkalischen]] Vulkanismus kontinentaler Riftzonen sorgt.
 
Bei zunehmender Ausweitung der Bruchzonen bilden sich schmale, langgezogene [[Meeresbecken]], die, wie das [[Rotes Meer|Rote Meer]], bereits mit ozeanischer Kruste unterlegt sind und sich mit der Zeit zu ausgedehnten Ozeanbecken ausweiten können.
 
=== Destruktive (Konvergierende) Plattengrenzen ===
Die gegeneinander gerichtete Bewegung zweier Platten wird Konvergenz genannt. Dabei findet entweder eine [[Überschiebung]] statt, bei der entlang einer [[Subduktionszone]] die [[dichte]]re unter die weniger dichte Platte geschoben wird ([[Subduktion]]), oder eine Kollision, bei der eine oder beide Platten in den Randbereichen gefaltet werden.
 
==== Kordilleren- oder Andentyp ====
[[Datei:Subduktion.jpg|mini|hochkant=1.5|Subduktion von dichterer ozeanischer Kruste unter einen Block aus kontinentaler Kruste]]
Der klassische Kordillerentyp der Kettengebirge findet sich über jenen Subduktionszonen, bei denen ozeanische Lithosphäre direkt unter kontinentale Lithosphäre subduziert wird, wie an der Westküste Südamerikas.
 
Durch das Abtauchen der ozeanischen Platte unter den Kontinentalblock befindet sich unmittelbar an der Subduktionsfront eine [[Tiefseerinne]]. Auf dem Kontinent entsteht durch den horizontalen Druck, den die subduzierte Platte ausübt, ein Faltengebirge, jedoch ohne ausgedehnte [[Tektonische Decke|Deckenüberschiebungen]]. Die erhöhten Drücke und Temperaturen der [[Gebirgsbildung]] können zu Regional-[[Metamorphose (Geologie)|Metamorphosen]] und Aufschmelzungen ([[Anatexis]]) in den betroffenen kontinentalen Krustenbereichen führen.
 
Innerhalb des Faltengebirges bildet sich ein vulkanischer Bogen aus. Dies geht darauf zurück, dass die subduzierte Platte im Gestein gebundene Fluide – insbesondere Wasser – mit in die Tiefe transportiert. Unter den dort vorherrschenden Druck- und Temperaturbedingungen kommt es zu [[Phasentransformation]]en im Gestein, wobei Wasser aus der abtauchenden Platte in den darüberliegenden Mantel abgegeben wird. Dadurch wird die Schmelztemperatur des Mantelgesteins verringert und es kommt zu einer [[Partielle Schmelze|Teilaufschmelzung]]. Die zunächst [[basalt]]ische Schmelze steigt durch die darüberliegende Lithosphäre auf und differenziert sich dabei zum Teil gravitativ oder vermengt sich mit Krustenmaterial. Die resultierenden zähflüssigen [[andesit]]ischen bis [[rhyolith]]ischen Magmen können bis an die Oberfläche gelangen und rufen dort zum Teil hochexplosive vulkanische Eruptionen hervor. Die Anden als Typusregion der Anden-Typ-Subduktion sind entsprechend auch beispielhaft für den damit verbundenen Vulkanismus, der durch zahlreiche aktive Vulkane, wie z.&nbsp;B. den [[Cerro Hudson]] oder den [[Corcovado (Chile)|Corcovado]], aber auch durch weit verbreitete fossile Lavagesteine und [[Ignimbrit]]e repräsentiert wird.
 
Bei der Kollision von ozeanischer mit kontinentaler Kruste wird der Ozeanboden nicht immer vollständig subduziert. Kleine Reste von Meeresbodensedimenten und basaltischem Material ([[Ophiolith]]e) werden zuweilen bei der Subduktion von ihrer Unterlage „abgeschabt“ (abgeschert) und versinken nicht im Oberen Mantel. Stattdessen werden sie, [[Akkretionskeil|keilförmig]] auf den Kontinentalrand aufgeschoben ([[Obduktion (Geologie)|obduziert]]) und in das Kettengebirge und damit die kontinentale Kruste integriert. Da sie der Subduktionsfront am nächsten sind, erfahren sie den höchsten Druck und werden zusammen mit den übrigen Gesteinen des Kontinentalrandes gefaltet und einer Hochdruck-Niedrig-Temperatur-Metamorphose unterzogen.
 
==== Vulkanische Inselbögen (Marianen-Typ) ====
Am Westrand des Pazifiks sowie in der [[Karibik]] wird ozeanische Kruste unter andere ozeanische Kruste subduziert. Auch dort bilden sich Tiefseerinnen und vulkanische Bögen. Letztere heißen [[Inselbogen|Inselbögen]], weil nur die höchsten Teile der Vulkanbögen oberhalb des Meeresspiegels liegen. Die Bogenform ist auf das geometrische Verhalten einer Kugeloberfläche, wie der Erdkruste, beim Abknicken und Untertauchen eines Plattenteils zurückzuführen. Die konvexe Seite des Bogens weist dabei stets in Richtung der subduzierten Platte. Beispiele sind die [[Marianen]], die [[Alëuten]], die [[Kurilen]] oder die [[Japan|japanischen Inseln]] sowie die [[Kleine Antillen|Kleinen]] und [[Große Antillen|Großen Antillen]].
 
Typisch für Subduktionszonen vom Marianen-Typ sind sogenannte [[Backarc-Becken]] (von engl. ''back'' für ‚hinter‘ und ''arc'' für ‚Bogen‘). Der Name verweist darauf, dass sich diese Dehnungszonen in der Kruste hinter dem Inselbogen (von der subduzierten Platte aus gesehen) befinden.
 
==== Kollisionstyp {{Anker|Plattenkollision}} ====
[[Datei:Indian subcontinent drift-de.svg|mini|hochkant=1.5|Die [[Kontinentaldrift|Drift]] der indischen [[Landfläche|Landmasse]] nach Norden]]
Wenn die [[Ozeanische Erdkruste|ozeanische Kruste]] zwischen zwei [[Kontinentale Erdkruste|Kontinentalblöcken]] vollständig [[Subduktion|subduziert]] worden ist, kommt es zum [[Gebirgsbildung#Kollision von Kontinentalblöcken|Kollisionstyp der Gebirgsbildung]], wie bspw. im Fall des [[Himalaya]]s durch den Zusammenstoß des [[Indischer Subkontinent|indischen Subkontinents]] mit der [[Eurasische Platte|Eurasischen Platte]]. Bei einem solchen Zusammenstoß wird die [[Lithosphäre]] durch die Bildung ausgedehnter [[Tektonische Decke|tektonischer Decken]] enorm verdickt. Nach einer mehrphasigen Gebirgsbildung (Orogenese), d.&#8239;h. zeitlich versetzten Zusammenstößen mehrerer Kleinkontinente oder [[#Vulkanische Inselbögen (Marianen-Typ)|vulkanischer Inselbögen]] (sog. [[Terran]]e) mit einem größeren Kontinentalblock und zwischenzeitlichen Subduktionsphasen, zeigen die erhaltenen [[Ophiolith]]<nowiki />zonen die Grenze zwischen den einzelnen Kleinkontinentalblöcken an (s.&#8239;a.'' [[Geosutur]]''). Sowohl an der West- als auch an der Ostküste [[Nordamerika]]s finden sich Anzeichen, dass der nordamerikanische Kontinent durch solche mehrphasigen Orogenesen im Laufe seiner geologischen Geschichte immer mehr [[Kontinentale Erdkruste|Kruste]] ansetzte.
 
Das Bild kann bei schrägem Aufeinandertreffen der Blöcke, wie bei der [[Apennin]]halbinsel im [[Mittelmeer]], noch komplizierter werden. So gibt es [[Indiz]]ien, dass ozeanische Mittelmeerkruste zeitweilig sowohl unter die [[Afrikanische Platte|Afrikanische]] als auch unter die Eurasische Platte subduziert wurde, während die [[Iberische Halbinsel]], der [[Sardinien|Sardo]][[Korsika|korsische]] Block und die Apenninhalbinsel zwischen den großen Kontinentalblöcken gegen den Uhrzeigersinn rotierten.
 
=== Konservative Plattengrenzen (Transform-Störungen) ===
[[Datei:San Andreas Fault Aerial View.gif|mini|links|San-Andreas-Verwerfung]]
An konservativen Plattengrenzen oder [[Transform-Störung]]en wird Lithosphäre weder neu gebildet noch subduziert, denn die Lithosphärenplatten „gleiten“ hier aneinander vorbei. An und nahe der Erdoberfläche, wo die Gesteine spröde sind, ist eine solche Plattengrenze als [[Blattverschiebung]] ausgebildet. Mit zunehmender Tiefe ist das Gestein infolge der hohen Temperaturen nicht spröde, sondern [[Viskosität|hochviskos]], d.&nbsp;h., es verhält sich wie eine extrem zähe Masse. Daher geht die Blattverschiebung in größerer Tiefe in eine sogenannte [[Scherzone|duktile Scherzone]] über.
 
Transform-Störungen in kontinentaler Kruste können eine beachtliche Länge erreichen und gehören, wie alle Plattengrenzen, zu den Erdbebenschwerpunkten. Bekannte Beispiele sind die [[San-Andreas-Verwerfung]] in Kalifornien oder die [[Nordanatolische Verwerfung]] in der Türkei.
 
An den Mittelozeanischen Rücken (MOR) gibt es nicht nur vulkanisch aktive Längsgräben, sondern auch querlaufende Störungen, bei denen es sich ebenfalls um Blattverschiebungen bzw. Scherzonen handelt. Diese zerschneiden die Flanken der MOR in unregelmäßigen Abständen und teilen den Rücken in einzelne, gegeneinander versetzte Abschnitte. Allerdings sind nur die Bereiche der Störungen, die zwischen den Zentralgräben zweier benachbarter MOR-Abschnitte verlaufen, tatsächlich auch konservative Plattengrenzen und damit Transformstörungen im eigentlichen Sinn. Auch die Transformstörungen der MOR sind seismisch aktiv.
 
=== Hotspots ===
[[Datei:Aa channel flow from Mauna Loa.jpg|mini|Ausbruch des Mauna Loa auf Hawaii, 1984]]
[[Hotspot (Geologie)|Hotspot]]-Vulkanismus steht nicht unmittelbar mit der Plattentektonik in Zusammenhang und ist nicht an Plattengrenzen gebunden. Stattdessen wird aus Quellen im tieferen Mantel heißes Material in Form sogenannter Mantel[[diapir]]e oder [[Plume (Geologie)|Plumes]] in den Oberen Mantel gefördert, wo aus diesem Material basaltische Magmen mit charakteristischer chemischer Zusammensetzung herausschmelzen, die als ''Ocean Island Basalts'' (OIBs, „Ozeaninsel-Basalte“) den Meeresgrund bzw. die Erdoberfläche erreichen. Als Paradebeispiel für Hotspot-Vulkanismus gilt die Insel [[Hawaii (Insel)|Hawaii]], die mitten auf der Pazifischen Platte liegt. Die [[Hawaii-Inselkette]] ([[Nordwestliche Hawaii-Inseln|bis einschließlich Midway und Kure]]) und ihre untermeerische Fortsetzung, der [[Hawaii-Emperor-Kette|Emperor-Rücken]], sind dadurch entstanden, dass die ozeanische [[Lithosphäre]] kontinuierlich über einen Hotspot geglitten ist, dessen Magmen in regelmäßigen Abständen den Ozeanboden durchschlagen haben. Da Hotspots traditionell als ortsfest gelten, wurden aus dem Verlauf solcher Vulkanketten und dem Alter des Lavagesteins ihrer Vulkane die Bewegungsrichtung und die Geschwindigkeit von Lithosphärenplatten rekonstruiert.
 
Zumindest für den Hawaii-Emperor-Rücken lassen neue Erkenntnisse vermuten, dass es sich dort nicht um einen stationären, sondern um einen beweglichen Hotspot handelt. Wissenschaftler untersuchten [[Paläomagnetik|paläomagnetische]] Daten in Basalten mehrerer untermeerischer Berge (englisch: {{lang|en|sea mounts}}), d.&nbsp;h. vormaliger Vulkaninseln, des Hawaii-Emperor-Rückens, die Hinweise auf die [[geographische Breite]] liefern, in der die Lava seinerzeit erstarrte („Paläobreite“).<ref>John A. Tarduno, Robert A. Duncan, David W. Scholl, Rory D. Cottrell, Bernhard Steinberger, Thorvaldur Thordarson, Bryan C. Kerr, Clive R. Neal, Fred A. Frey, Masayuki Torii, Claire Carvallo: ''The Emperor Seamounts: Southward Motion of the Hawaiian Hotspot Plume in Earth’s Mantle.'' In: ''Science.'' 301, Nr.&nbsp;5636, 2003, S.&nbsp;1064–1069, [[doi:10.1126/science.1086442]] (alternativer Volltextzugriff: [http://www.whoi.edu/science/GG/geodynamics/2004/images/Tarduno%20etal03.pdf Woods Hole Oceanographic Institution]).</ref> Die Ergebnisse der Analyse zeigten, dass mit zunehmendem Alter des Gesteins auch die Paläobreite zunimmt, was nahelegt, dass der Hotspot nicht stationär war, sondern im Laufe der letzten 80 Millionen Jahre eine Eigenbewegung nach Süden vollzogen hat, und zwar mit einer mittleren Geschwindigkeit von 4&nbsp;cm pro Jahr. Da diese Geschwindigkeiten in der gleichen Größenordnung liegen, wie die Plattengeschwindigkeiten (Pazifische Platte aktuell ca. 10&nbsp;cm pro Jahr<ref>im Schnitt 0,952 Winkelgrad pro Million Jahre, siehe Tabelle 3 in Charles DeMets, Richard G. Gordon, Donald F. Argus: ''Geologically current plate motions.'' In: ''Geophysical Journal International.'' 181, Nr.&nbsp;1, 2010, S.&nbsp;1–80, [[doi:10.1111/j.1365-246X.2009.04491.x]] (alternativer Volltextzugriff: [http://www.gps.caltech.edu/~jstock/Morvel.pdf California Institute of Technology])</ref>) sind mögliche Eigenbewegungen von Hotspots bei Berechnungen der Bewegungsrichtung und der Geschwindigkeit von Lithosphärenplatten anhand von Altersdaten von Hotspotvulkanketten zu berücksichtigen.
 
Auch unter [[Island]] befindet sich ein Hotspot. Dort liegt jedoch der Sonderfall vor, dass der Hotspot-Vulkanismus mit dem Vulkanismus eines Mittelozeanischen Rückens zusammenfällt.
 
== Ursachen der Plattentektonik und ungelöste Probleme ==
 
Wenn die Realität der Kontinentaldrift unter [[Geowissenschaften|Geowissenschaftlern]] auch kaum noch bezweifelt wird, so besteht über die Kräfte im [[Erdinneres|Erdinnern]], die die Bewegungen der Platten auslösen und vorantreiben, noch fast so viel Unklarheit wie zu Zeiten Wegeners (siehe hierzu auch [[Mantelkonvektion]]). Die beiden hier angeführten Theorien galten lange Zeit als gegensätzlich und miteinander unvereinbar. Nach heutiger Sicht werden sie immer mehr als einander ergänzend angesehen.
 
=== Konvektionsströmungen ===
Die heute am meisten vertretene Meinung geht von langsamen [[Mantelkonvektion|Konvektionsströmen]] aus, die sich durch den Wärmeübergang zwischen dem heißen Erdkern und dem Erdmantel ergeben. Der Erdmantel wird hierbei von unten aufgeheizt. Die Energie für die Aufheizung des Mantelmaterials könnte nach einer Modellvorstellung noch von der [[Akkretionsenergie]] herrühren, die bei der Entstehung der Erde frei wurde. Zum Teil tragen auch [[Radioaktivität|radioaktive]] Zerfallsprozesse zur Aufheizung bei. Die Reibungsenergie der Gezeitenwirkung des Mondes auf den Erdkörper kann wohl vernachlässigt werden. Allerdings bilden Konvektionsströme unter [[Labor]]bedingungen, zum Beispiel in erhitzten zähen Flüssigkeiten, sehr hoch strukturierte und symmetrische Formen aus, die z.&nbsp;B. eine [[Wabe]]nstruktur haben. Dies lässt sich kaum mit der tatsächlich beobachteten Gestalt der geotektonischen Platten und ihren Bewegungen vereinbaren.
 
Eine andere Theorie geht von nur zwei sich gegenüber liegenden Konvektionszentren aus. Eine heute dominante Zelle läge unter Afrika, was das dortige Vorherrschen von [[Grabenbruch|Dehnungsbrüchen]] und das Fehlen einer Subduktionszone am Rand der Afrikanischen Platte erklären würde. Die andere Konvektionszelle läge auf der Gegenseite des Globus – unter der Pazifischen Platte, die ständig an Größe verliert. Der Pazifik, der interessanterweise keinerlei kontinentale Kruste beinhaltet, wäre somit der Überrest eines urzeitlichen Superozeans [[Panthalassa]], der einst [[Pangaea]] umschlossen habe. Erst wenn sich im Gebiet des heutigen Pazifik alle Kontinente wieder zu einem neuen [[Superkontinent]] vereinigt hätten, würde sich die Bewegung umkehren ([[Wilson-Zyklus]]). Die neue Pangaea würde wieder auseinanderbrechen, um den neuen Superozean, der sich aus Atlantik, Indischem und Arktischem Ozean gebildet hätte, ein weiteres Mal zu schließen.
 
=== Aktive Lithosphärenplatten ===
Andere Autoren sehen die Platten nicht nur passiv auf dem Mantel liegen. So nehmen die [[Mächtigkeit (Geologie)|Mächtigkeit]] und die [[Dichte]] einer ozeanischen Lithosphärenplatte stetig zu, während sie sich vom Mittelozeanischen Rücken entfernt und abkühlt, wodurch sie bereits ein wenig in den Mantel einsinkt und dadurch leichter von der Oberplatte überschoben werden kann. Nach dem Abtauchen unter die Oberplatte wird das subduzierte Gestein schließlich unter den Druck- und Temperaturbedingungen bei zunehmender Tiefe in Gestein höherer Dichte [[Metamorphose (Geologie)|umgewandelt]]. So wird aus dem Basalt der ozeanischen Kruste schließlich [[Eklogit]], wodurch die Dichte der subduzierten Platte die Dichte des umliegenden Erdmantels übersteigt. Deshalb wird die bei der [[Subduktion]] in den Mantel sinkende Platte durch ihr eigenes Gewicht tiefer gezogen, wobei Plattenmaterial im Extremfall bis nahe an den [[Kern-Mantel-Grenze|unteren Rand des Erdmantels]] sinken kann.<ref>Alexander R. Hutko, Thorne Lay, Edward J. Garnero, Justin Revenaugh: ''Seismic detection of folded, subducted lithosphere at the core-mantle boundary''. In: ''Nature.'' 441, 2006, S.&nbsp;333–336, [[doi:10.1038/nature04757]].</ref> Die auf die Lithosphärenplatte ausgeübte Kraft wird Plattenzug genannt (engl. ''slab pull'', von ''pull'' ‚ziehen‘; ''slab'' ‚Platte‘). Eine etwa um den Faktor 10 kleinere Kraft entsteht darüber hinaus an der dem Mittelozeanischen Rücken zugewandten Seite einer Lithosphärenplatte, da die dort aufgewölbte Kruste eine [[Hangabtriebskraft]] erfährt, den Rückendruck (engl. ''ridge push'', von ''ridge'' ‚Rücken‘ und ''push'' ‚drücken‘). Auch auf die gegenüberliegende, nicht in den Mantel sinkende Platte wirkt in einer Subduktionszone eine Kraft, eine Zugspannung. Mit welcher Geschwindigkeit sich eine ozeanische Lithosphärenplatte allerdings tatsächlich bewegt, hängt auch von der Größe der Gegenkräfte ab.<ref>Harro Schmeling: ''Plattentektonik: Antriebsmechanismen und -kräfte.'' In: ''Geodynamik I und II'' (Vorlesungsskript, WS 2004/2005, Goethe-Universität Frankfurt am Main, {{Webarchiv|url=http://www.geophysik.uni-frankfurt.de/~schmelin/skripte/Geodyn1-kap2-S47-S58-2004.pdf|wayback=20111108121917|text=PDF}})</ref>
 
== Plattentektonik auf anderen Himmelskörpern ==
Nach dem bisherigen Stand der Forschung scheint der Mechanismus der Plattentektonik nur auf der Erde wirksam zu sein. Das ist für den kleinen Planeten [[Merkur (Planet)|Merkur]] und für die großen Monde der Gasplaneten und den Erdmond noch plausibel. Die Lithosphäre dieser relativ zur Erde viel kleineren Himmelskörper ist im Verhältnis zu mächtig, um in Form von Platten mobil sein zu können. Allerdings zeigt die Kruste des Jupitermondes [[Ganymed (Mond)|Ganymed]] Ansätze einer zum Erliegen gekommenen Plattentektonik. Bei der fast erdgroßen [[Venus (Planet)|Venus]] ist wiederum schwer zu verstehen, warum eine Plattentektonik trotz starkem Vulkanismus nicht in Gang gekommen sein dürfte. Eine erhebliche Rolle könnte dabei das nur auf der Erde vorkommende freie [[Wasser]] spielen. Offensichtlich dient es hier bis hinab auf die Kristallgitterebene als reibungsminderndes „[[Schmiermittel]]“. An den Subduktionszonen der Erde werden im Porenraum der Sedimente des Ozeanbodens Milliarden Tonnen Wasser mit in die Tiefe gezogen, das den überliegenden Erdmantel partiell aufschmilzt. Auf der Venus sind flüssiges Wasser und folglich Meere zumindest heute nicht mehr vorhanden.
 
Der [[Mars (Planet)|Mars]] dagegen scheint eine Zwischenstellung zu besitzen. Wasser bzw. Eis ist vorhanden, und man meint, Ansätze einer Plattentektonik erkennen zu können. Die aufgereihten gigantischen [[Schildvulkan]]e und [[Grabensystem]]e, die den halben Planeten umspannen, erinnern in gewisser Weise an das [[Riftzone|Rifting]] auf der Erde. Dem steht wiederum das Fehlen von eindeutigen Verschluckungszonen gegenüber. Wahrscheinlich reichte die innere Hitzeentwicklung und die daraus folgende Konvektion auf diesem relativ kleinen Planeten nicht ganz aus, um den Mechanismus wirklich in Gang zu setzen, oder der Vorgang kam bereits in der Frühgeschichte des Planeten wieder zum Stillstand.
 
Ob eine Art Plattentektonik auf anders aufgebauten Himmelskörpern stattfindet, ist nicht bekannt, aber vorstellbar. Als Kandidaten für konvektionsgetriebene weiträumige horizontale Krustenverschiebungen können die Monde [[Europa (Mond)|Europa]] und [[Enceladus (Mond)|Enceladus]] gelten. Der knapp erdmondgroße Europa weist einen Eispanzer von etwa 100&nbsp;km Dicke über einem felsigen Mondkörper auf, der in den unteren Bereichen teilweise oder vollständig aufgeschmolzen sein könnte, so dass der Eispanzer möglicherweise wie Packeis auf einem Ozean schwimmt. Der nur etwa 500&nbsp;km kleine Enceladus wird wahrscheinlich durch Gezeitenkräfte aufgeheizt. Flüssiges Wasser oder durch hohen Druck [[Duktilität|duktiles]] Eis könnte bei beiden Himmelskörpern an tiefreichenden [[Störung (Geologie)|Störungen]] aufsteigen und das spröde Eis der Kruste zur Seite drücken, was wiederum folgen ließe, dass andernorts Kruste verschluckt werden müsste. Die Oberfläche dieser Monde ist jedenfalls geologisch aktiv oder zumindest aktiv gewesen und zeigt Anzeichen dafür, dass dort eine Krustenerneuerung stattfand. Der Vulkanismus auf [[Io (Mond)|Io]] dagegen scheint derartig stark zu sein, dass stabile Krustenbereiche in der Art der Platten erst gar nicht entstanden sind.
 
== Siehe auch ==
* {{WikipediaDE|Plattentektonik}}
* {{WikipediaDE|Liste der tektonischen Platten}}
* {{WikipediaDE|Bathymetrie}}
* {{WikipediaDE|Kraton}}
 
== Literatur ==
* Wolfgang Frisch, Martin Meschede: ''Plattentektonik.'' 2. Auflage. Primus-Verlag, Darmstadt 2007, ISBN 3-89678-525-7
* ''Ozeane und Kontinente, ihre Herkunft, ihre Geschichte und Struktur.'' Spektrum-der-Wissenschaft-Verlagsgesellschaft, Heidelberg 1985, ISBN 3-922508-24-3
* Hans Pichler: ''Vulkanismus. Naturgewalt, Klimafaktor und kosmische Formkraft.'' Spektrum-der-Wissenschaft-Verlagsgesellschaft, Heidelberg 1985, ISBN 3-922508-32-4
* Hubert Miller: ''Abriß der Plattentektonik.'' Enke, Stuttgart 1992, ISBN 3-432-99731-0
* Rainer Kind, Xiaohui Yuan: ''Kollidierende Kontinente.'' In: ''Physik in unserer Zeit.'' 34, Nr. 5, 2003, {{ISSN|0031-9252}}, S. 213–217
* Dennis McCarthy: ''Geophysical explanation for the disparity in spreading rates between the Northern and Southern hemispheres.'' In: ''Journal of Geophysical Research.'' Vol. 112, 2007, S. B03410
* Christiane Martin, Manfred Eiblmaier (Hrsg.): Lexikon der Geowissenschaften : in sechs Bänden, Heidelberg [u.&nbsp;a.]: Spektrum, Akademischer Verlag, 2000–2002
* Wolfgang Jacoby: ''Plattentektonik an den Rändern der amerikanischen Kontinente.'' In: ''Die Geowissenschaften.'' 10, Nr. 12, 1992, S.&nbsp;353–359
* Alfred Wegener: ''Die Entstehung der Kontinente und Ozeane.'' 4. Auflage (= Die Wissenschaft, Band 66). Friedrich Vieweg & Sohn, Braunschweig 1929
 
== Weblinks ==
{{Commonscat|Plate tectonics|Plattentektonik}}
{{Wiktionary}}
* [https://www.br.de/mediathek/video/sendungen/alpha-centauri/alpha-centauri-mallorca-2002_x100.html Soll man sich ein Haus auf Mallorca kaufen?] aus der Fernseh-Sendereihe alpha-Centauri (ca. 14 Minuten). Ausgestrahlt am 31. März 2002
* [http://www.webgeo.de/g_007/ Plattentektonik Lerneinheit auf webgeo.de]
* [http://pubs.usgs.gov/gip/dynamic/dynamic.html ''This Dynamic Earth'': The Story of Plate Tectonics] Von W. Jacquelyne Kious, Robert I. Tilling (USGS)
* [http://si-vmarcgis01.si.edu/thisdynamicplanet/ ''This Dynamic Planet''] Interaktive Weltkarte (Smithsonian Institution)
* [http://www.ucmp.berkeley.edu/geology/tectonics.html Animation zur Plattentektonik] (GIF, englisch)
* [http://www.scotese.com/ ''PALEOMAP Project''] mit Karten und Animationen zur Plattentektonik (englisch)
* [http://earth.rice.edu/MTPE/geo/geosphere/topics/plate_tectonics/plate_future.html Verschiebung der Landmassen in der Zukunft]
* [http://all-geo.org/metageologist/2012/08/how-old-is-plate-tectonics/ ''How old is plate tectonics?''] Blogeintrag des Geologen Simon Wellings auf seinem Blog ''Metageologist'' (englisch)
 
== Einzelnachweise ==
<references />
 
{{Exzellent|17. Juni 2006|17897412}}
 
{{Normdaten|TYP=s|GND=4046317-5|NDL=00569219}}
 
[[Kategorie:Plattentektonik|!]]
[[Kategorie:Geophysik]]
[[Kategorie:Kontinent]]
 
{{Wikipedia}}

Aktuelle Version vom 31. Mai 2022, 23:11 Uhr