Kategorie:Soziologische Systemtheorie und Satz des Pythagoras: Unterschied zwischen den Seiten

Aus AnthroWiki
(Unterschied zwischen Seiten)
imported>Joachim Stiller
Keine Bearbeitungszusammenfassung
 
imported>Odyssee
(Die Seite wurde neu angelegt: „mini|hochkant=1.2|Satz des Pythagoras Der '''Satz des Pythagoras''' ist einer der fundamentalen Satz (Math…“)
 
Zeile 1: Zeile 1:
[[Kategorie:Soziologische Systemtheorie|!]]
[[Datei:01-Rechtwinkliges Dreieck-Pythagoras.svg|mini|hochkant=1.2|Satz des Pythagoras]]
[[Kategorie:Soziologische Theorie|Q]]
Der '''Satz des Pythagoras''' ist einer der fundamentalen [[Satz (Mathematik)|Sätze]] der [[Euklidische Geometrie|euklidischen Geometrie]]. Er besagt, dass in allen ebenen [[Rechtwinkliges Dreieck|rechtwinkligen Dreiecken]] die Summe der [[Flächeninhalt]]e der Kathetenquadrate gleich dem Flächeninhalt des Hypotenusenquadrates ist. Sind <math>a</math> und <math>b</math> die [[Länge (Mathematik)|Längen]] der am [[Rechter Winkel|rechten Winkel]] anliegenden Seiten, der [[Kathete]]n, und <math>c</math> die Länge der dem rechten Winkel gegenüberliegenden Seite, der [[Hypotenuse]], dann lautet der Satz als [[Gleichung]] ausgedrückt:
[[Kategorie:Sozialphilosophie]]
 
[[Kategorie:Systemtheorie|R]]
: <math>a^2 + b^2 = c^2</math>
[[Kategorie:Niklas Luhmann]]
 
Der Satz ist nach [[Pythagoras|Pythagoras von Samos]] benannt, der als Erster dafür einen [[Beweis (Mathematik)|mathematischen Beweis]] gefunden haben soll, was allerdings in der Forschung umstritten ist. Die Aussage des Satzes war schon lange vor der Zeit des Pythagoras in [[Babylon]] und Indien bekannt, es gibt jedoch keinen Nachweis dafür, dass man dort auch einen Beweis hatte.
 
== Beweise ==
Für den Satz sind mehrere hundert verschiedene Beweise bekannt. Der Satz des Pythagoras ist damit der meistbewiesene mathematische Satz. Exemplarisch werden nachfolgend vier geometrische Beweise sowie ein Beweis durch Addition abgeleiteter Volumina vorgestellt. Ein fünfter Beweis aus dem Jahr 1875 von [[James A. Garfield]] findet sich unter [[Beweis des Satzes des Pythagoras nach Garfield]], der dem Beweis durch Ergänzung stark ähnelt.
 
=== Geometrischer Beweis durch Ergänzung ===
[[Datei:Pythagorasergänzung.svg|mini|Positionierung von vier Dreiecken in einem Quadrat mit der Seitenlänge <math>a+b</math>]]
In ein [[Quadrat]] mit der Seitenlänge <math>a + b</math> werden vier gleiche ([[Kongruenz (Geometrie)|kongruente]]) rechtwinklige Dreiecke mit den Seiten <math>a</math>, <math>b</math> und <math>c</math> (Hypotenuse) eingelegt. Dies kann auf zwei Arten geschehen, wie im Diagramm dargestellt ist.
 
Die Flächen des linken und des rechten Quadrates sind gleich (Seitenlänge <math>a + b</math>). Das linke besteht aus den vier rechtwinkligen Dreiecken und einem Quadrat mit Seitenlänge <math>c</math>, das rechte aus den gleichen Dreiecken sowie einem Quadrat mit Seitenlänge <math>a</math> und einem mit Seitenlänge <math>b</math>. Die Fläche <math>c^2</math> entspricht also der Summe der Fläche <math>a^2</math> und der Fläche <math>b^2</math>, also
 
: <math>a^2 + b^2 = c^2</math>.
 
[[Datei:Pythagoras-2a.gif|mini|Geometrischer Beweis des Satzes des Pythagoras (Animation)]]
 
Eine algebraische Lösung ergibt sich aus dem linken Bild. Das große Quadrat hat die Seitenlänge <math>a+b</math> und somit die Fläche <math>(a+b)^2</math>. Zieht man von dieser Fläche die vier Dreiecke ab, die jeweils eine Fläche von <math>\tfrac{ab}2</math> (also insgesamt <math>2ab</math>) haben, so bleibt die Fläche <math>c^2</math> übrig. Es ist also
 
: <math>(a+b)^2 = 2ab+c^2</math>.
 
Auflösung der Klammer liefert
 
: <math>a^2+2ab+b^2 = 2ab+c^2</math>.
 
Zieht man nun auf beiden Seiten <math>2ab</math> ab, bleibt der Satz des Pythagoras übrig.
 
=== Scherungsbeweis ===
[[Datei:Pythagorasanimation.gif|mini|Zweifache Scherung der Kathetenquadrate und Drehung in das Hypotenusenquadrat]]
Eine Möglichkeit ist die [[Scherung (Geometrie)|Scherung]] der Kathetenquadrate in das Hypotenusenquadrat. Unter Scherung eines Rechtecks versteht man in der Geometrie die Überführung des Rechtecks in ein Parallelogramm unter Beibehaltung der Höhe. Bei der Scherung ist das sich ergebende Parallelogramm zu dem Ausgangsrechteck flächengleich. Über zwei Scherungen können die beiden kleineren Quadrate dann in zwei Rechtecke umgewandelt werden, die zusammen genau in das große Quadrat passen.
 
Beim exakten Beweis muss dann noch über die [[Kongruenz (Geometrie)|Kongruenzsätze]] im Dreieck nachgewiesen werden, dass die kleinere Seite der sich ergebenden Rechtecke jeweils dem betreffenden Hypotenusenabschnitt entspricht. Wie üblich wurden in der Animation die Höhe mit <math>h</math>, die Hypotenusenabschnitte mit <math>p</math> und <math>q</math> bezeichnet.
 
=== Beweis mit Ähnlichkeiten ===
[[Datei:Pythagoras through similarity2.svg|mini|Ähnlichkeit der Dreiecke <math>ABC</math>, <math>BCD</math> und <math>ADC</math>]]
<!--- Bitte Bild zu Ähnlichkeiten hier belassen! --->
Es ist nicht unbedingt notwendig, zum Beweis des Satzes von Pythagoras (explizit) Flächen heranzuziehen. Geometrisch eleganter ist es, Ähnlichkeiten zu verwenden. Sobald man sich durch Berechnung der Winkelsummen im Dreieck überzeugt hat, dass die beiden Winkel <math>\delta</math> im unteren Bild gleich groß sein müssen, sieht man, dass die Dreiecke <math>ABC</math>, <math>BCD</math> und <math>ADC</math> ähnlich sind. Der Beweis des Satzes von Pythagoras ergibt sich dann wie im Bild gezeigt, dabei beweist man auch den [[Kathetensatz des Euklid|Kathetensatz]] und die Addition beider Varianten des Kathetensatzes ergibt den Satz des Pythagoras selbst. Diese Herleitung lässt sich anschaulich mit der Ähnlichkeit der Quadrate und der Ähnlichkeit deren angrenzenden Dreiecke erklären. Da deren Fläche proportional zur Fläche der jeweils anliegenden Quadrate ist, repräsentiert die Gleichung
 
: <math>ADC + BCD = ABC</math>
 
den Satz.
 
[[Kategorie:Geometrie]]
 
{{Wikipedia}}

Version vom 14. Dezember 2018, 15:52 Uhr

Satz des Pythagoras

Der Satz des Pythagoras ist einer der fundamentalen Sätze der euklidischen Geometrie. Er besagt, dass in allen ebenen rechtwinkligen Dreiecken die Summe der Flächeninhalte der Kathetenquadrate gleich dem Flächeninhalt des Hypotenusenquadrates ist. Sind und die Längen der am rechten Winkel anliegenden Seiten, der Katheten, und die Länge der dem rechten Winkel gegenüberliegenden Seite, der Hypotenuse, dann lautet der Satz als Gleichung ausgedrückt:

Der Satz ist nach Pythagoras von Samos benannt, der als Erster dafür einen mathematischen Beweis gefunden haben soll, was allerdings in der Forschung umstritten ist. Die Aussage des Satzes war schon lange vor der Zeit des Pythagoras in Babylon und Indien bekannt, es gibt jedoch keinen Nachweis dafür, dass man dort auch einen Beweis hatte.

Beweise

Für den Satz sind mehrere hundert verschiedene Beweise bekannt. Der Satz des Pythagoras ist damit der meistbewiesene mathematische Satz. Exemplarisch werden nachfolgend vier geometrische Beweise sowie ein Beweis durch Addition abgeleiteter Volumina vorgestellt. Ein fünfter Beweis aus dem Jahr 1875 von James A. Garfield findet sich unter Beweis des Satzes des Pythagoras nach Garfield, der dem Beweis durch Ergänzung stark ähnelt.

Geometrischer Beweis durch Ergänzung

Positionierung von vier Dreiecken in einem Quadrat mit der Seitenlänge

In ein Quadrat mit der Seitenlänge werden vier gleiche (kongruente) rechtwinklige Dreiecke mit den Seiten , und (Hypotenuse) eingelegt. Dies kann auf zwei Arten geschehen, wie im Diagramm dargestellt ist.

Die Flächen des linken und des rechten Quadrates sind gleich (Seitenlänge ). Das linke besteht aus den vier rechtwinkligen Dreiecken und einem Quadrat mit Seitenlänge , das rechte aus den gleichen Dreiecken sowie einem Quadrat mit Seitenlänge und einem mit Seitenlänge . Die Fläche entspricht also der Summe der Fläche und der Fläche , also

.
Geometrischer Beweis des Satzes des Pythagoras (Animation)

Eine algebraische Lösung ergibt sich aus dem linken Bild. Das große Quadrat hat die Seitenlänge und somit die Fläche . Zieht man von dieser Fläche die vier Dreiecke ab, die jeweils eine Fläche von (also insgesamt ) haben, so bleibt die Fläche übrig. Es ist also

.

Auflösung der Klammer liefert

.

Zieht man nun auf beiden Seiten ab, bleibt der Satz des Pythagoras übrig.

Scherungsbeweis

Zweifache Scherung der Kathetenquadrate und Drehung in das Hypotenusenquadrat

Eine Möglichkeit ist die Scherung der Kathetenquadrate in das Hypotenusenquadrat. Unter Scherung eines Rechtecks versteht man in der Geometrie die Überführung des Rechtecks in ein Parallelogramm unter Beibehaltung der Höhe. Bei der Scherung ist das sich ergebende Parallelogramm zu dem Ausgangsrechteck flächengleich. Über zwei Scherungen können die beiden kleineren Quadrate dann in zwei Rechtecke umgewandelt werden, die zusammen genau in das große Quadrat passen.

Beim exakten Beweis muss dann noch über die Kongruenzsätze im Dreieck nachgewiesen werden, dass die kleinere Seite der sich ergebenden Rechtecke jeweils dem betreffenden Hypotenusenabschnitt entspricht. Wie üblich wurden in der Animation die Höhe mit , die Hypotenusenabschnitte mit und bezeichnet.

Beweis mit Ähnlichkeiten

Ähnlichkeit der Dreiecke , und

Es ist nicht unbedingt notwendig, zum Beweis des Satzes von Pythagoras (explizit) Flächen heranzuziehen. Geometrisch eleganter ist es, Ähnlichkeiten zu verwenden. Sobald man sich durch Berechnung der Winkelsummen im Dreieck überzeugt hat, dass die beiden Winkel im unteren Bild gleich groß sein müssen, sieht man, dass die Dreiecke , und ähnlich sind. Der Beweis des Satzes von Pythagoras ergibt sich dann wie im Bild gezeigt, dabei beweist man auch den Kathetensatz und die Addition beider Varianten des Kathetensatzes ergibt den Satz des Pythagoras selbst. Diese Herleitung lässt sich anschaulich mit der Ähnlichkeit der Quadrate und der Ähnlichkeit deren angrenzenden Dreiecke erklären. Da deren Fläche proportional zur Fläche der jeweils anliegenden Quadrate ist, repräsentiert die Gleichung

den Satz.


Dieser Artikel basiert (teilweise) auf dem Artikel Satz des Pythagoras aus der freien Enzyklopädie Wikipedia und steht unter der Lizenz Creative Commons Attribution/Share Alike. In Wikipedia ist eine Liste der Autoren verfügbar.

Unterkategorien

Diese Kategorie enthält die folgenden 3 Unterkategorien (3 insgesamt):

Seiten in der Kategorie „Soziologische Systemtheorie“

Folgende 5 Seiten sind in dieser Kategorie, von 5 insgesamt.