gemeinsam neue Wege der Erkenntnis gehen
Eine freie Initiative von Menschen bei anthrowiki.at anthrowiki.at, anthro.world anthro.world, biodyn.wiki biodyn.wiki und steiner.wiki steiner.wiki
mit online Lesekreisen, Übungsgruppen, Vorträgen ...
Wie Sie die Entwicklung von AnthroWiki durch Ihre Spende unterstützen können, erfahren Sie hier.

Use Google Translate for a raw translation of our pages into more than 100 languages.
Please note that some mistranslations can occur due to machine translation.
Alle Banner auf einen Klick

Menge

Aus AnthroWiki
Version vom 26. März 2018, 09:00 Uhr von imported>Odyssee (Die Seite wurde neu angelegt: „mini|Eine Menge von Polygonen Die '''Menge''' (von {{mhd|''manic''}} „viel“) fasst eine endliche oder unendliche Anzahl…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Eine Menge von Polygonen

Die Menge (von mhd. manic „viel“) fasst eine endliche oder unendliche Anzahl beliebiger, wohlunterschiedener Elemente zu einer Gesamtheit zusammen und ist heute eines der grundlegendsten Konzepte der Mathematik.

Vereinbarungsgemäß werden die Elemente einer Menge entweder explizit oder durch eine geeignete Definition innerhalb geschwungener Klammern angegeben, z.B. für die abzählbar unendliche Menge der [[Natürliche Zahl|natürlichen Zahlen . Eine Menge, die keine Elemente enthält, wird als leere Menge ( oder auch ) bezeichnet.

Die Mengenlehre wurde in der Zeit von 1874 bis 1897 von Georg Cantor begründet. Er definierte den Begriff „Menge“ wie folgt:

„Unter einer „Menge“ verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die „Elemente“ von M genannt werden) zu einem Ganzen.“

Georg Cantor[1]

Einzelnachweise

  1. Georg Cantor: Beiträge zur Begründung der transfiniten Mengenlehre. In: Mathematische Annalen 46 (1895), S. 481. Online.