gemeinsam neue Wege der Erkenntnis gehen
Eine freie Initiative von Menschen bei anthrowiki.at anthrowiki.at, anthro.world anthro.world, biodyn.wiki biodyn.wiki und steiner.wiki steiner.wiki
mit online Lesekreisen, Übungsgruppen, Vorträgen ...
Wie Sie die Entwicklung von AnthroWiki durch Ihre Spende unterstützen können, erfahren Sie hier.

Use Google Translate for a raw translation of our pages into more than 100 languages.
Please note that some mistranslations can occur due to machine translation.

Doppelpendel

Aus AnthroWiki
Schematische Zeichnung eines Doppelpendels.
Trajektorie eines idealisierten Doppelpendels

Das Doppelpendel ist ein beliebtes Modell zur Demonstration von chaotischen Prozessen. Es ist zugleich eines der einfachsten nichtlinearen Dynamischen Systeme, welches chaotisches Verhalten zeigt. An die Masse eines Pendels mit der Länge wird ein weiteres Pendel der Länge mit Masse gehängt. Die Herleitung der Bewegungsgleichung zum Berechnen der Bewegung des Doppelpendels lässt sich vereinfachen, wenn man starre, masselose Pendelstangen und Reibungsfreiheit annimmt.

Ein Merkmal eines chaotischen Systems ist, dass es Anfangsbedingungen gibt, sodass ein weiteres Experiment mit nahezu identischen Anfangsbedingungen , die sich nur um eine infinitesimale Störung unterscheiden, nach kurzer Zeit ein anderes Verhalten zeigt. Diese sensible Abhängigkeit lässt sich durch Berechnen von Ljapunow-Exponenten der Trajektorien charakterisieren.

Lösung der Bewegungsgleichungen

Die Bewegungsgleichungen für die generalisierten Koordinaten und stellen ein nichtlineares System von zwei gekoppelten Differentialgleichungen dar, welches analytisch nicht lösbar ist. Es kann bei vier bekannten Anfangswerten () mit numerischen Verfahren gelöst werden. Hierbei werden also die anfänglichen Auslenkungen (z. B. 30° und 30°) und die anfänglichen Geschwindigkeiten (z. B. und ) eingegeben und damit dann die Evolution des Pendels berechnet.

Mittels Trigonometrie können die Winkel und in die kartesischen Koordinaten der Massenpunkte überführt werden.

Anwendungen

Eine Kirchenglocke mit Klöppel bildet ein Doppelpendel.

Auswertung des chaotischen Verhaltens

Zur Betrachtung des chaotischen Verhaltens des Doppelpendels gibt es eine Reihe von Möglichkeiten. Oft kann mittels einfachster Berechnungen eine Aussage über chaotisches Verhalten getroffen werden. Beispiele sind der maximale Ljapunow-Exponent (MLE) oder Bifurkationsdiagramme.

Siehe auch

Weblinks

Commons: Double pendulums - Weitere Bilder oder Audiodateien zum Thema