gemeinsam neue Wege der Erkenntnis gehen
Eine freie Initiative von Menschen bei anthrowiki.at anthrowiki.at, anthro.world anthro.world, biodyn.wiki biodyn.wiki und steiner.wiki steiner.wiki
mit online Lesekreisen, Übungsgruppen, Vorträgen ...
Wie Sie die Entwicklung von AnthroWiki durch Ihre Spende unterstützen können, erfahren Sie hier.

Use Google Translate for a raw translation of our pages into more than 100 languages.
Please note that some mistranslations can occur due to machine translation.
Alle Banner auf einen Klick
Grundkurs zur Ausbildung in Biographie-Arbeit
11 Wochenenden in Mannheim
5. April 2025 bis 8. Feb. 2026
Leitung Joop Grün und Walter Seyffer
+49 (0) 6203 84 390 60
www.akademie-biographiearbeit.org
Der neue Glomer Katalog 2024/25 ist da!

Aktuelle Neuerscheinungen und alle lieferbaren Bücher anthroposophischer Verlage
Anthroposophie, Waldorf, Jugend & Kinderbücher, Gesundheit, Lebensphasen, Wissenschaften mit mehr als 7.500 Titeln aus über 80 Verlagen.

Rudolf Steiner: Die Prüfung der Seele
Sonntag, 4. Mai 2025, 20h
Bild 10 - 13, mit Einführung und anschließendem Publikumsgespräch

Livestream: Anmeldung auf https://holiversitaet.de/kultur/

Modus tollens

Aus AnthroWiki

Modus tollens (lat. für „Modus des Aufhebens“, wörtlich: „aufhebender Modus“), eigentlich Modus tollendo tollens (in Abgrenzung zum Modus ponendo tollens), ist eine Schlussfigur, die in etlichen Kalkülen der klassischen Logik als Schlussregel verwendet wird.

Er besagt, dass aus den Voraussetzungen „Wenn , dann .“ und „Nicht .“ auf „Nicht .“ geschlossen werden kann.

Der Modus tollendo tollens ist damit ein Gegenstück zum Modus ponendo ponens.

Schema Beispiel
modus tollens
Wenn es geregnet hat, ist die Straße nass.
Die Straße ist nicht nass.
modus tollens Es hat nicht geregnet.

Der lateinische Name Modus tollendo tollens, „durch Aufheben aufhebende Schlussweise“, erklärt sich daraus, dass es sich um eine Schlussfigur (modus) handelt, die bei gegebener erster Prämisse, , durch das „Aufheben“ (tollendo) des Satzes B, also durch das Setzen seiner Verneinung, , einen anderen Satz, nämlich , ebenfalls „aufhebt“ (tollens), also zu seiner Verneinung, , führt.

Als Aussage

Obwohl der Modus tollendo tollens eine Schlussregel, also ein metasprachliches Konzept ist, wird die Bezeichnung Modus tollens gelegentlich auch für objektsprachliche Ausdrücke mit der folgenden Gestalt verwendet:

Da aber Schlussregeln und Aussagen ganz unterschiedliche Konzepte sind, ist es wissenschaftlich eher unglücklich, sie mit derselben Bezeichnung zu benennen. Generell ist die Vermischung von Objekt- und Metasprache problematisch und sollte normalerweise unterbleiben.

Beispiel

Aus den Voraussetzungen „Wenn es regnet, ist die Straße nass“ und „Die Straße ist nicht nass“ lässt sich der logische Schluss „Es regnet nicht“ ziehen. Hingegen ist die Schlussrichtung „Die Straße ist nass, daher regnet es“ unzulässig und falsch.

Beweis

Die logische Äquivalenz der Aussagen und folgt aus den Definitionen der Subjunktion und der Negation.

A B ¬B ¬A
f w f w w w w
f w w w f w w
w f f w w f f
w w w w f w f

Bedeutung des Modus tollens

Nach dem Kritischen Rationalismus ist der Modus tollens die Grundlage der wissenschaftlichen Forschung. Dabei ist A eine abstrakte hypothetische Theorie, B ein Beobachtungssatz, der aus der Theorie folgt. Wissenschaftliche Experimente haben die Funktion, durch Beobachtung festzustellen, ob B wahr oder falsch ist. Ist B falsch, dann auch die ihm zugrundeliegende Theorie, diese ist dann falsifiziert.

Siehe auch

Dieser Artikel basiert auf einer für AnthroWiki adaptierten Fassung des Artikels Modus tollens aus der freien Enzyklopädie de.wikipedia.org und steht unter der Lizenz Creative Commons Attribution/Share Alike. In Wikipedia ist eine Liste der Autoren verfügbar.