gemeinsam neue Wege der Erkenntnis gehen
Eine freie Initiative von Menschen bei anthrowiki.at anthrowiki.at, anthro.world anthro.world, biodyn.wiki biodyn.wiki und steiner.wiki steiner.wiki
mit online Lesekreisen, Übungsgruppen, Vorträgen ...
Wie Sie die Entwicklung von AnthroWiki durch Ihre Spende unterstützen können, erfahren Sie hier.

Use Google Translate for a raw translation of our pages into more than 100 languages.
Please note that some mistranslations can occur due to machine translation.
Alle Banner auf einen Klick
Grundkurs zur Ausbildung in Biographie-Arbeit
11 Wochenenden in Mannheim
5. April 2025 bis 8. Feb. 2026
Leitung Joop Grün und Walter Seyffer
+49 (0) 6203 84 390 60
www.akademie-biographiearbeit.org
Der neue Glomer Katalog 2024/25 ist da!

Aktuelle Neuerscheinungen und alle lieferbaren Bücher anthroposophischer Verlage
Anthroposophie, Waldorf, Jugend & Kinderbücher, Gesundheit, Lebensphasen, Wissenschaften mit mehr als 7.500 Titeln aus über 80 Verlagen.

Rudolf Steiner: Die Prüfung der Seele
Sonntag, 4. Mai 2025, 20h
Bild 10 - 13, mit Einführung und anschließendem Publikumsgespräch

Livestream: Anmeldung auf https://holiversitaet.de/kultur/

Tabelle von Ableitungs- und Stammfunktionen

Aus AnthroWiki
(Weitergeleitet von Stammfunktion)

Diese Tabelle von Ableitungs- und Stammfunktionen (Integraltafel) gibt eine Übersicht über Ableitungsfunktionen und Stammfunktionen, die in der Differential- und Integralrechnung benötigt werden.

Tabelle einfacher Ableitungs- und Stammfunktionen (Grundintegrale)

Diese Tabelle ist zweispaltig aufgebaut. In der linken Spalte steht eine Funktion, in der rechten Spalte eine Stammfunktion dieser Funktion. Die Funktion in der linken Spalte ist somit die Ableitung der Funktion in der rechten Spalte.

Hinweise:

  • Wenn eine Stammfunktion von ist und eine beliebige reelle Zahl (Konstante), dann ist auch eine Stammfunktion von . Zum Beispiel ist auch eine Stammfunktion von . Ist der Definitionsbereich von ein Intervall, so erhält man auf diese Art alle Stammfunktionen. Besteht der Definitionsbereich von aus mehreren Intervallen, so kann die additive Konstante auf jedem der Intervalle getrennt gewählt werden. Die additive Konstante wird aus Gründen der Übersichtlichkeit in der Tabelle nicht aufgeführt.
  • Weiterhin gilt: Falls eine Stammfunktion von ist, so ist aufgrund der Linearität des Integrals eine Stammfunktion von .
  • Ebenso gilt: Sind und Stammfunktionen von und , so ist eine Stammfunktion von .

Potenz- und Wurzelfunktionen

Funktion Stammfunktion

Exponential- und Logarithmusfunktionen

Funktion Stammfunktion

Trigonometrische Funktionen und Hyperbelfunktionen

Funktion Stammfunktion

Sonstige

Funktion Stammfunktion

Weblinks

Dieser Artikel basiert auf einer für AnthroWiki adaptierten Fassung des Artikels Tabelle von Ableitungs- und Stammfunktionen aus der freien Enzyklopädie de.wikipedia.org und steht unter der Lizenz Creative Commons Attribution/Share Alike. In Wikipedia ist eine Liste der Autoren verfügbar.