Eine freie Initiative von Menschen bei anthrowiki.at, anthro.world, biodyn.wiki und steiner.wiki mit online Lesekreisen, Übungsgruppen, Vorträgen ... |
Wie Sie die Entwicklung von AnthroWiki durch Ihre Spende unterstützen können, erfahren Sie hier. |
Use Google Translate for a raw translation of our pages into more than 100 languages. Please note that some mistranslations can occur due to machine translation. |
Tensor
Ein Tensor (von lat. tendere „spannen“) ist eine algebraische Verallgemeinerung der mathematischen Begriffe von Skalar, Vektor und Matrix. Im heute gebräuchlichen, erstmals von dem deutschen Physiker Woldemar Voigt geprägten Sinn[1] versteht man darunter eine multilineare Abbildung von Skalaren, Vektoren und Tensoren auf einen resultierenden Tensor.
Der Rang bzw. die Stufe eines Tensors gibt dessen Dimensionalität an. So hat etwa ein Skalar den Rang 0, ist also ein Tensor 0-ter Stufe. Ein Vektor hat entsprechend den Rang 1, eine Matrix den Rang 2 usw. Ein klassisches Beispiel für einen Tensor zweiter Stufe ist der von Augustin-Louis Cauchy eingeführte Spannungstensor , der in Matrixschreibweise wie folgt angegeben werden kann:
Der Spannungstensor bildet einen Normalvektor auf den entsprechenden Spannungsvektor ab:
Einsteinsche Summenkonvention
Die Summenkonvention wurde 1916 von Albert Einstein in seiner grundlegenden Arbeit über die Allgemeine Relativitätstheorie eingeführt, um die in der Tensorrechnung häufig vorkommende Summenbildung in vereinfachter übersichtlicherer Form anzuschreiben[2]. So lässt sich beispielsweise das Matrixprodukt zweier quadratischer -Matrizen und
- vereinfacht wie folgt anschreiben:
Vierertensor
Ein Vierertensor ist ein Tensor über dem 4-dimensionalen Minkowski-Raum. Vierertensoren werden insbesondere in der allgemeinen Relativitätstheorie und in der Quantenfeldtheorie verwendet. Ein Vierertensor zweiter Stufe lässt sich durch eine 4 x 4 Matrix darstellen, wie beispielsweise der metrische Tensor :
- .
Weitere Beispiele sind der elektromagnetische Feldstärketensor und der Energie-Impuls-Tensor.
Vierertensoren vierter Stufe lassen sich durch Koeffizienten der Form darstellen, wie etwa der Riemannsche Krümmungstensor.
Siehe auch
- Tensor - Artikel in der deutschen Wikipedia
- Spannungstensor - Artikel in der deutschen Wikipedia
Einzelnachweise
- ↑ Woldemar Voigt: Die fundamentalen physikalischen Eigenschaften der Krystalle in elementarer Darstellung, Verlag von Veit & Comp., Leipzig 1898 archive.org
- ↑ Albert Einstein: Die Grundlage der allgemeinen Relativitätstheorie. In: Annalen der Physik. 4. Folge, Bd. 49 = 354. Bd. der ganzen Reihe, Nummer 7 (1916), S. 770–822, doi:10.1002/andp.19163540702