Eine freie Initiative von Menschen bei ![]() ![]() ![]() ![]() mit online Lesekreisen, Übungsgruppen, Vorträgen ... |
![]() |
Use Google Translate for a raw translation of our pages into more than 100 languages. Please note that some mistranslations can occur due to machine translation. |
Fourier-Transformation


Die Fourier-Transformation (FT), benannt nach dem französischen Mathematiker und Physiker Jean Baptiste Joseph Fourier (1768-1830), ist eine mathematische Methode, um aus einer beliebigen (auch aperiodischen) Funktion eine Summe (bzw. ein Integral) harmonischer periodischer Funktionen zu erzeugen, aus denen sie wieder aufgebaut werden kann, ähnlich wie etwa ein musikalischer Akkord in die darin zusammenklingenden Töne inklusive aller Obertöne aufgespalten, also gleichsam analysiert bzw. in ihr Frequenzspektrum zerlegt werden kann. In diesem Sinn spricht man auch von einer Fourier-Analyse bzw. einer klassischen harmonischen Analyse. Die durch die Fourier-Transformation erzeugte Funktion, die dieses Spektrum beschreibt, nennt man Fourier-Transformierte oder auch Spektralfunktion.
Die Umkehrfunktion, entsprechend dem Wiederaufbau des Akkords aus den einzelnen Tönen, wird dementsprechend Fourier-Synthese genannt. Die Fourier-Transformation wird in der Physik häufig dazu verwendet, um eine durch empirisch gewonnene Messdaten aufgespannte Funktion in ihre harmonischen Bestandteile zu zerlegen.
Definition
Für eine beliebige integrierbare Funktion ist die kontinuierliche Fourier-Transformierte für alle wie folgt definiert:
Ist eine diskrete Folge von Messwerten gegeben, wird die diskrete Fourier-Transformierte (DFT) als Fourier-Reihe wie folgt dargestellt:
- für
Für die inverse Fourier-Transformation (iFT) gilt entsprechend für alle :
bzw. für die inverse diskrete Fourier-Transformation (iDFT):
- für
wobei nach der Eulerschen Formel die komplexen harmonischen Funktionen erzeugt werden:
- bzw.
Siehe auch
- Fourier-Transformation - Artikel in der deutschen Wikipedia
- Fourier-Analysis - Artikel in der deutschen Wikipedia