Eine freie Initiative von Menschen bei anthrowiki.at, anthro.world, biodyn.wiki und steiner.wiki mit online Lesekreisen, Übungsgruppen, Vorträgen ... |
Wie Sie die Entwicklung von AnthroWiki durch Ihre Spende unterstützen können, erfahren Sie hier. |
Use Google Translate for a raw translation of our pages into more than 100 languages. Please note that some mistranslations can occur due to machine translation. |
In-vitro-Fleisch
In-vitro-Fleisch (von lat. in vitro ‚im Glas‘), auch kultiviertes Fleisch, umgangssprachlich Laborfleisch, ist das Ergebnis von Gewebezüchtung mit dem Ziel, Fleisch zum menschlichen Verzehr im industriellen Maßstab synthetisch herzustellen.[1]
Geschichte
Die Erzeugung von In-vitro-Fleisch basiert auf den Methoden der Zellkultur, insbesondere auf den Methoden der Gewebezüchtung wie die 3D-Zellkultur und das Tissue Engineering. Ab 1994 wurden In-vitro-Modelle im Rahmen einer Hygiene-Untersuchung zur Bestimmung der Keimzahl in Fleischproben eingesetzt.[2] Diese Zellen wurden in Suspensionskultur gehalten. Ab 1997 wurden gemeinsame Kulturen von Muskel- und Fettzellen zur Untersuchung des Fettstoffwechsels verwendet.[3] In Folge wurde die Zelldichte durch Wachstum auf der Oberfläche von Kollagen oder microcarrier beads (zu deutsch ‚Mikroträgerperlen‘) erhöht, die im Vergleich zu Zellkulturflaschen eine deutlich erhöhte Wachstumsfläche bieten.[4] Darüber hinaus erhöht die Zirkulation des Kulturmediums in rotierenden Zellkulturflaschen (eng. roller bottles) die Versorgung der Zellen mit Nährstoffen und Sauerstoff. Durch die erhöhte Oberfläche des Trägermaterials kann eine Konfluenz der Zellen und die daraus folgende Zellkontakthemmung hinausgezögert werden, was sich in schnellerem Wachstum und höherer Ausbeute auswirkt. Zur Vermeidung von häufigen Biopsien werden als Ausgangsmaterial meistens pluripotente Stammzellen verwendet, aus denen primäre Zellen von Myozyten heranwachsen.[5][6] Da die ursprünglichen Methoden zur Erzeugung von In-vitro-Fleisch auf Monolayer-Zellkulturen basierten, besaßen die Erzeugnisse noch keine dreidimensionale fleischartige Struktur. Daher wurden parallel zum Tissue Engineering Methoden entwickelt, um dem Wachstum von Organen in Zellkultur näher zu kommen.[7][8][6]
Herstellung
Verwendet werden Myoblasten, ein Zelltyp, der einen Kompromiss aus Ausdifferenziertheit und Vermehrungsrate darstellt. Die Ausgangszellen können aus dem jeweiligen Tier schmerzfrei via Biopsie und ohne Tötung entnommen werden.[9]
Die zugrundeliegende Biotechnologie wird schon länger in der Medizin mit menschlichen Hautzellen verwendet, um Transplantate für Schwerbrandverletzte zu züchten. Bislang ist dies auf dünnlagige Hautschichten begrenzt. Die Membranen können übereinandergelegt werden und wenig strukturiertes Hackfleisch ersetzen, wie es in Hamburgern eingesetzt wird. Schwierigkeiten bereiten kompliziertere Strukturen wie Steak, da diese an einem dreidimensionalen Gerüst wachsen müssen und die Muskelzellen für vergleichbare Fleischkonsistenz mechanischer Bewegung ausgesetzt sein sollten.[10]
Motivation
Von 1961 bis 2011 hat sich der Fleischverbrauch weltweit fast vervierfacht.[11] Die Lobbyorganisation des Invitrofleisches The In Vitro Meat Consortium argumentiert ökologisch. Demnach wird sich vom Jahr 2000 bis 2050 die Fleischproduktion mehr als verdoppeln. Bereits jetzt werden 34 Millionen km² Landfläche (26 % der Landfläche der Erde) zur Viehhaltung und zum Futtermittelanbau verwendet. Die übrigen bewirtschaftbaren Landflächen von 28 Millionen km² bestehen zu 45 % aus Waldgebiet. 68 % der Emissionen von Ammoniak sind ein Abfallprodukt der Viehhaltung. Massentierhaltung und globaler Viehtransport und Transport von Tierprodukten haben zur Ausbreitung von Seuchen geführt, die auch für den Menschen gefährlich werden können. Des Weiteren gibt es Bedenken, ob Tierschutz und industrialisierte Produktion miteinander vereinbar sind. Ein Ersatz eines Großteils der industriellen Tierproduktion durch Biotechnologie könnte wieder eine extensive Viehwirtschaft im kleinen ökologischen Maßstab erlauben, die das Hochpreis-Segment bedient.[12]
Züchtungen in sterilen Zellkulturen oder Bioreaktoren eignen sich besser zur industriellen Fertigung, da die Überwachung und Fernhaltung von Krankheitserregern und Giftstoffen einfacher ist. Zudem entfällt das aufwendige Entfernen von Innereien, Haaren und Knochen.[1]
Des Weiteren wäre es möglich, ähnlich wie bei traditionell hergestelltem Fleisch, durch gentechnologische Modifikationen den ernährungsphysiologischen Wert des Produkts zu erhöhen. Weitere Ziele sind eine Senkung der Abgasbelastung, da kein für den Treibhauseffekt relevantes Methan entsteht und keine Ausscheidungen, wie sie bei der Massentierhaltung in großen Mengen anfallen.[10]
Die Energiebilanz von In-vitro-Fleisch ist gegenüber der Tierhaltung günstiger, gegenüber pflanzlicher Ernährung aber im Nachteil. Ferner ist der Einsatz von Hochtechnologie im Nahrungsmittelbereich sehr teuer. Mittelfristig angestrebt wird, durch Investition in die Forschung preislich mit in Europa und den USA stark subventionierten Tierprodukten konkurrenzfähig zu werden.[13]
Marktreife
Der erste In-vitro-Burger wurde von einem niederländischen Forscherteam um Mark Post zur Verfügung gestellt und am 5. August 2013 bei einer Pressedemonstration in London zubereitet und getestet.[14] Er war das Ergebnis jahrelanger Forschung an der Universität Maastricht und repräsentierte den Gegenwert von 250.000 Euro. Das Projekt wurde von Sergey Brin, dem Mitbegründer von Google, finanziert.[15] Forscher rechneten 2015 damit, in einem Zeitraum von fünf Jahren ein marktfähiges Produkt zu einem Preis von $90 pro Kilogramm anbieten zu können.[16] Im Januar 2016 präsentierte das US-Startup Memphis Meats den Medien ein Fleischbällchen aus Rinderstammzellen.[17] In einem Bericht des Deutschlandfunkes sprechen die niederländischen Forscher – die sich mittlerweile ebenfalls als Unternehmen firmiert haben – im Januar 2017 zeitplangemäss von rund 3 Jahren, nannten einen Preis von rund 10 bis 11 Dollar pro Burger und weisen auf die Entstehung von Konkurrenz-Startups in Israel und den USA hin, die diesen Zeitraum möglicherweise verringern könnten. Durch Beimengung von Fettgewebe aus Stammzellen von Rindern sei inzwischen auch der Geschmack des Fleisches maßgeblich verbessert worden.[18]
Markt
2018 beteiligte sich die Merck KGaA mit 5,5 Millionen Euro und die Bell Food Group mit 2 Millionen Euro an der niederländischen Firma Mosa Meat.[19][20] Die M-Industrie ist seit 2019 am israelischen Start-up Aleph Farms beteiligt.[21] Nachdem Cargill 2017 bereits in das Unternehmen Memphis Meats investiert hat, wurde 2019 bekannt, dass Cargill auch in Aleph Farms investieren wird.[22]
Siehe auch
- In-vitro-Fleisch - Artikel in der deutschen Wikipedia
Literatur
- Datar I und Betty M: Possibilities for an in vitro meat production system. In: Innovative Food Science and Emerging Technologies. 11, 2010, S. 13–22. doi:10.1016/j.ifset.2009.10.007.
- M.L.P. Langelaan, KJM. Boonen, R.B. Polak, F.P.T. Baaijens, M.J. Post, D.W.J. van der Schaft: Meet the new meat: tissue engineered skeletal muscle. In: Trends Food Sci Technol. 21, Nr. 2, 2010, S. 59–66. doi:10.1016/j.tifs.2009.11.001. In: Dissertation von K. J. M. Boonen (PDF; 3,2 MB). Technische Universität Eindhoven 2009. S. 9–20.
Weblinks
- Geo-Artikel zu In-vitro-Fleisch
- Schwedischer Forschungsrat: Scientists initiate action plan to advance cultured meat (Pressemitteilung bei idw)
- Chalmers Univ.: Background information, cultured meat. (Factsheet, PDF)
- NZZ: Mit Fleisch, aber ohne Tier (Bericht zur AAAS Jahreskonferenz 2012 in Vancouver mit Ankündigung des Laborhamburgers)
- planet e.: Steaks aus dem Brutkasten (Doku, 28 Min., 2018)
Einzelnachweise
- ↑ 1,0 1,1 Patent WO9931222: Industrial Scale Production of meat from in vitro cell cultures.
- ↑ P. van Netten, J. Huis in 't Veld, D. A. Mossel: An in-vitro meat model for the immediate bactericidal effect of lactic acid decontamination on meat surfaces. In: The Journal of applied bacteriology. Band 76, Nummer 1, Januar 1994, S. 49–54, ISSN 0021-8847. PMID 8144404.
- ↑ M. V. Dodson, J. L. Vierck, K. L. Hossner, K. Byrne, J. P. McNamara: The development and utility of a defined muscle and fat co-culture system. In: Tissue & cell. Band 29, Nummer 5, Oktober 1997, S. 517–524, ISSN 0040-8166. PMID 9364801.
- ↑ P. D. Edelman, D. C. McFarland, V. A. Mironov, J. G. Matheny: Commentary: In vitro-cultured meat production. In: Tissue engineering. Band 11, Nummer 5–6, Mai/Juni 2005, S. 659–662, ISSN 1076-3279. doi:10.1089/ten.2005.11.659. PMID 15998207. PDF.
- ↑ Henk P. Haagesman, Klaas J. Hellingwerf, Bernard A. J. Roelen: Production of animal proteins by cell systems – Desk study on cultured meat („kweekvlees“). Universität Utrecht, Fachbereich Veterinärmedizin, 2009 (citeseerx.ist.psu.edu).
- ↑ 6,0 6,1 M. J. Post: Cultured meat from stem cells: challenges and prospects. In: Meat science. Band 92, Nummer 3, November 2012, S. 297–301, ISSN 1873-4138. doi:10.1016/j.meatsci.2012.04.008. PMID 22543115. PDF (Memento vom 2. Februar 2014 im Internet Archive) Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft (bitte prüfe den Link gemäß Anleitung und entferne dann diesen Hinweis).
- ↑ M. A. Benjaminson, J. A. Gilchriest, M. Lorenz: In vitro edible muscle protein production system (MPPS): stage 1, fish. In: Acta astronautica. Band 51, Nummer 12, Dezember 2002, S. 879–889, ISSN 0094-5765. PMID 12416526.
- ↑ R. G. Dennis, P. E. Kosnik: Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In: In vitro cellular & developmental biology. Animal. Band 36, Nummer 5, Mai 2000, S. 327–335, ISSN 1071-2690. doi:<0327:EAICPO>2.0.CO;2 10.1290/1071-2690(2000)036<0327:EAICPO>2.0.CO;2. PMID 10937836.
- ↑ In-vitro-Fleisch; Erzeugung von Fleischprodukten via „Tissue-Engineering“-Technologien. In: futurefood.org. Abgerufen am 17. April 2018.
- ↑ 10,0 10,1 Gewebezüchtung: Fleisch in Labor hergestellt. In: orf.at. 12. Juli 2005, abgerufen am 6. April 2019.
- ↑ Rheinsche Post 13. September 2011: Fleisch der Zukunft aus dem Labor
- ↑ Why In Vitro Meat? In: invitromeat.org. Archiviert vom Original am 31. August 2009; abgerufen am 22. Mai 2019.
- ↑ Telepolis Ist Laborfleisch das neue Gemüse für Unbelehrbare?
- ↑ Franziska Badenschier, Julian Windisch: Künstliche Burger. In: arte.tv. 25. Oktober 2013, abgerufen am 5. Juni 2019.
- ↑ Mosa Meat: OUR STORY In: mosameat.com, abgerufen am 19. Juli 2018.
- ↑ BBC: What does a lab-grown burger taste like?, abgerufen am 19. Oktober 2015.
- ↑ Invitrofleisch.info, abgerufen am 7. Mai 2017
- ↑ Volker Mrasek: Künstliches Fleisch – Stammzell-Burger statt Massentierhaltung. In: deutschlandfunk.de. 31. Januar 2017, abgerufen am 12. April 2018.
- ↑ Merck KGaA: Merck Ventures BV | Amsterdam, The Netherlands, a subsidiary of Merck KGaA, Darmstadt, Germany | MOSA MEAT RAISES €7.5M TO COMMERCIALISE CULTURED MEAT In: m-ventures.com, 17. Juli 2018, abgerufen am 18. Juli 2018.
- ↑ Bell Food Group: Bell Food Group investiert in kultiviertes Fleisch. Operatives Ergebnis der Bell Food Group in den ersten sechs Monaten unter Vorjahr. In: bellfoodgroup.com, 17. Juli 2018, abgerufen am 18. Juli 2018.
- ↑ Migros investiert in Labor-Fleisch. In: schweizerbauer.ch. 15. Mai 2019, abgerufen am 15. Mai 2019.
- ↑ Laborfleisch: Auch Agrarriese investiert. In: schweizerbauer.ch. 20. Mai 2019, abgerufen am 20. Mai 2019.
Dieser Artikel basiert auf einer für AnthroWiki adaptierten Fassung des Artikels In-vitro-Fleisch aus der freien Enzyklopädie de.wikipedia.org und steht unter der Lizenz Creative Commons Attribution/Share Alike. In Wikipedia ist eine Liste der Autoren verfügbar. |