Eine freie Initiative von Menschen bei ![]() ![]() ![]() ![]() mit online Lesekreisen, Übungsgruppen, Vorträgen ... |
![]() |
Use Google Translate for a raw translation of our pages into more than 100 languages. Please note that some mistranslations can occur due to machine translation. |
Surjektive Funktion
Aus AnthroWiki

Eine surjektive Funktion ist eine mathematische Funktion, die jedes Element der Zielmenge mindestens einmal als Funktionswert annimmt. Das heißt, jedes Element der Zielmenge hat mindestens ein Urbild. Eine Funktion ist bezüglich ihrer Bildmenge immer surjektiv.
Eine surjektive Funktion wird auch als Surjektion bezeichnet. Ist sie zudem auch injektiv, heißt sie bijektiv. In der Sprache der Relationen spricht man auch von rechtstotalen Funktionen.
Definition
Es seien und Mengen, sowie eine Abbildung.
Die Abbildung heißt surjektiv, wenn es zu jedem aus (mindestens) ein aus mit gibt. Eine solche Abbildung notiert man auch so: .
Formal:
Weblinks

Dieser Artikel basiert auf einer für AnthroWiki adaptierten Fassung des Artikels Surjektive Funktion aus der freien Enzyklopädie de.wikipedia.org und steht unter der Lizenz Creative Commons Attribution/Share Alike. In Wikipedia ist eine Liste der Autoren verfügbar. |