Eine freie Initiative von Menschen bei ![]() ![]() ![]() ![]() mit online Lesekreisen, Übungsgruppen, Vorträgen ... |
![]() |
Use Google Translate for a raw translation of our pages into more than 100 languages. Please note that some mistranslations can occur due to machine translation. |
Mandelbrot-Menge

Die Mandelbrot-Menge, benannt nach Benoît Mandelbrot, ist die Menge der komplexen Zahlen , für welche die durch die Iteration
definierte Folge beschränkt ist.
Geometrisch als Teil der Gaußschen Zahlenebene interpretiert, ist die Mandelbrotmenge ein Fraktal, das im allgemeinen Sprachgebrauch oft Apfelmännchen genannt wird. Bilder davon können erzeugt werden, indem ein Pixelraster auf die Zahlenebene gelegt und so jedem Pixel ein Wert von zugeordnet wird. Wenn die Folge mit dem entsprechenden beschränkt ist, es also zur Mandelbrotmenge gehört, wird das Pixel z. B. schwarz gefärbt, und ansonsten weiß. Wird stattdessen die Farbe danach bestimmt, wie viele Folgenelemente berechnet werden müssen, bis feststeht, dass die Folge nicht beschränkt ist, entsteht ein sog. Geschwindigkeitsbild der Mandelbrotmenge: Die Farbe jedes Pixels gibt an, wie schnell die Folge mit dem betreffenden gegen Unendlich strebt.
Die ersten computergrafischen Darstellungen wurden 1978 von Robert Brooks und Peter Matelski vorgestellt.[1] 1980 veröffentlichte Benoît Mandelbrot eine Arbeit über das Thema.[2] Später wurde sie von Adrien Douady und John Hamal Hubbard in einer Reihe grundlegender mathematischer Arbeiten systematisch untersucht. Die mathematischen Grundlagen dafür wurden bereits 1905 von dem französischen Mathematiker Pierre Fatou erarbeitet.

Definition

Definition über Rekursion
Die Mandelbrot-Menge ist die Menge aller komplexen Zahlen , für welche die rekursiv definierte Folge komplexer Zahlen mit dem Bildungsgesetz
und dem Anfangsglied
beschränkt bleibt. Das heißt, eine komplexe Zahl ist Element der Mandelbrotmenge , wenn die Beträge der mit diesem berechneten nicht über jede Grenze wachsen, unabhängig davon, wie groß wird. Dies lässt sich wie folgt schreiben:[3]
- .
Man kann leicht zeigen, dass der Betrag der über jede Grenze wächst, wenn ein mit auftritt, somit ist diese Definition gleichbedeutend mit:
- .
Definition über komplexe quadratische Polynome
Die Mandelbrotmenge lässt sich auch über komplexe quadratische Polynome beschreiben:
mit einem komplexen Parameter . Für jedes wird die Folge
iterativ berechnet, wobei die -fache Hintereinanderausführung der Iteration bedeutet, also
- .
In Abhängigkeit vom Wert des Parameters wird diese Folge dann entweder unendlich, so dass also kein Element der Mandelbrotmenge ist, oder sie verbleibt innerhalb eines Bereichs um den Ursprung der Zahlenebene, und ist Element der Mandelbrotmenge.
Die Mandelbrotmenge ist eine Untermenge der komplexen Zahlen mit der Definition
oder gleichbedeutend
Zur Erläuterung werden einige Eigenschaften und Beispiele angeführt:
- Aufgrund der zuvor beschriebenen Feststellung kann gesetzt werden. Dabei gibt der Wert den Radius um den Ursprung an, innerhalb dessen ein Element von liegen kann. Außerhalb dieses Kreises sind keine Elemente von zu finden.
- Wegen der Betragsfunktion ist symmetrisch zur reellen Achse.
- Um die Menge grafisch darzustellen, müssen die Werte des Parameter alle einzeln bis zu einer selbstbestimmten Anzahl von Iterationen berechnet werden.
- Ist so lautet die Folge und ist beschränkt. Daher ist Element von .
- Für zeigt die iterative Folge Divergenz und ist kein Element von .
Definition über Julia-Mengen
Die Mandelbrot-Menge wurde von Benoît Mandelbrot ursprünglich zur Klassifizierung von Julia-Mengen eingeführt, die bereits Anfang des 20. Jahrhunderts von den französischen Mathematikern Gaston Maurice Julia und Pierre Fatou untersucht wurden. Die Julia-Menge zu einer bestimmten komplexen Zahl ist definiert als der Rand der Menge aller Anfangswerte , für die die obige Zahlenfolge beschränkt bleibt. Es kann bewiesen werden, dass die Mandelbrot-Menge genau die Menge der Werte ist, für die die zugehörige Julia-Menge zusammenhängend ist.[4]
Dieses Prinzip wird in vielen Resultaten über das Verhalten der Mandelbrotmenge vertieft. So zeigt Shishikura, dass der Rand der Mandelbrotmenge ebenso wie die zugehörige Julia-Menge die Hausdorff-Dimension 2 hat.[5] Ein unveröffentlichtes Manuskript von Jean-Christophe Yoccoz diente John Hamal Hubbard als Grundlage für seine Ergebnisse über lokal zusammenhängende Julia-Mengen und lokal zusammenhängende Mandelbrot-Mengen .[6]
Geometrische und mathematische Eigenschaften
Die Mandelbrotmenge ist abgeschlossen (da ihr Komplement offen ist) und in der abgeschlossenen Scheibe mit dem Radius 2 um den Ursprung enthalten und somit kompakt.
Gilt und bezeichnet die -te Iteration, dann gehört ein Punkt genau dann zur Mandelbrotmenge, falls
- für alle
Wird der Betrag von größer als 2, entkommt der Punkt bei Iteration ins Unendliche und gehört damit nicht zur Mandelbrotmenge.
Der ungeheure Formenreichtum der Mandelbrot-Menge erschließt sich aus ihrem Bezug zu Julia-Mengen. Julia-Mengen zur Iteration sind Fraktale, außer für einige -Werte wie (Strecke) oder (Kreis). Die Formen dieser fraktalen Strukturen sind innerhalb einer Julia-Menge stets die gleichen, umspannen aber für Julia-Mengen zu verschiedenem Parameter einen enormen Formenreichtum. Es zeigt sich, dass die Strukturen der Mandelbrot-Menge in der Umgebung eines bestimmten Wertes genau die Strukturen der zugehörigen Julia-Menge wiedergeben. Damit enthält die Mandelbrot-Menge den kompletten Formenreichtum der unendlich vielen Julia-Mengen (s. u.).
In den fraktalen Strukturen am Rand finden sich verkleinerte ungefähre Kopien der gesamten Mandelbrot-Menge, die Satelliten. Jeder Bildausschnitt der Mandelbrot-Menge, der sowohl Punkte aus als auch solche außerhalb von umfasst, enthält unendlich viele dieser Satelliten. Unmittelbar am Rand eines Satelliten treten fast die gleichen Strukturen auf wie an den entsprechenden Stellen des Originals. Diese Strukturen sind jedoch nach weiter außen hin mit den Strukturen kombiniert, die für die größere Umgebung des Satelliten typisch sind.
Da jeder Satellit wiederum mit Satelliten höherer Ordnung bestückt ist, lässt sich immer eine Stelle finden, an der eine beliebige Anzahl beliebiger verschiedener Strukturen in beliebiger Reihenfolge kombiniert auftritt. Diese Strukturen sind allerdings nur bei extremer Vergrößerung erkennbar.
Die Mandelbrot-Menge ist spiegelsymmetrisch zur reellen Achse. Sie ist zusammenhängend (das heißt, sie bildet keine Inseln), wie Adrien Douady und John Hamal Hubbard 1984 bewiesen, und es wird vermutet (Douady/Hubbard), dass sie lokal zusammenhängend ist (MLC-Vermutung). Dies ist eine der großen offenen Fragen in der komplexen Dynamik und bisher unbewiesen (obwohl es Teilresultate zum Beispiel von Jean-Christophe Yoccoz gibt, der lokalen Zusammenhang für bestimmte Werte von bewies, für die endlich-renormalisierbaren Punkte). Die MLC erlaubt weitreichende Folgerungen über die Topologie der Mandelbrotmenge. Beispielsweise würde daraus die Hyperbolizitätsvermutung folgen, dass jede offene Menge in der Mandelbrotmenge (also das Innere der Mandelbrotmenge) aus Punkten mit attraktiven Zyklen besteht. Die Mandelbrot-Menge ist zwar selbstähnlich, aber nicht exakt, denn keine zwei Teilstrukturen ihres Randes sind exakt gleich; aber in der Nähe vieler Randpunkte bilden sich bei fortgesetzter Ausschnittvergrößerung im Grenzfall periodische Strukturen. An speziellen Punkten hat die Mandelbrotmenge Selbstähnlichkeit (vermutet von John Milnor und bewiesen von Mikhail Lyubich 1999).
Da die Mandelbrot-Menge Kardioid- und Kreisflächen enthält, hat sie die fraktale Dimension 2. Der Rand der Mandelbrot-Menge hat eine unendliche Länge, und seine Hausdorff-Dimension beträgt nach Arbeiten von Mitsuhiro Shishikura ebenfalls 2; das impliziert, dass die Box-Dimension den Wert 2 hat. Es ist denkbar, dass der Rand der Mandelbrot-Menge einen positiven (notwendig endlichen) Flächeninhalt hat; andernfalls wäre dieser Flächeninhalt null. Der Flächeninhalt der Mandelbrot-Menge ist nicht bekannt und beträgt nach numerischen Schätzungen etwa 1,5065918849.[7]
Die Mandelbrotmenge enthält deformierte Kopien aller Julia-Mengen, wie Tan Lei 1990 für die Misiurewicz-Punkte der Mandelbrotmenge bewiesen hat, die dicht im Rand der Mandelbrotmenge liegen. Das ist ein weiterer Beleg für die enge Verwandtschaft der Struktur von Julia- und Mandelbrotmengen. So wurden in den Beweisen von Yoccoz für lokalen Zusammenhang der Mandelbrotmenge bei endlich renormalisierbaren Punkten und von Shishikura über die fraktale Dimension des Randes der Mandelbrotmenge zuerst die entsprechenden Eigenschaften bei den zum Parameterwert gehörigen Julia-Mengen untersucht und dann auf die Mandelbrotmenge übertragen.
Die Frage, ob die Mandelbrot-Menge entscheidbar ist, ergibt zunächst keinen Sinn, da überabzählbar ist. Einen Ansatz, den Begriff der Entscheidbarkeit auf überabzählbare Mengen zu verallgemeinern, stellt das Blum-Shub-Smale-Modell dar. Innerhalb dessen ist die Mandelbrot-Menge nicht entscheidbar.
Bildergalerie einer Zoomfahrt
Die folgende exemplarische Bildersequenz einer Zoomfahrt an eine bestimmte Stelle gibt einen Eindruck vom geometrischen Formenreichtum und erläutert gewisse typische Strukturelemente. Die Vergrößerung im letzten Bild beträgt etwa 1 zu 60 Milliarden. Bezogen auf einen üblichen Computerbildschirm verhält sich dieser Ausschnitt wie zu der Gesamtgröße der Mandelbrotmenge von 2,5 Millionen Kilometern, dessen Rand in dieser Auflösung eine unvorstellbare Fülle verschiedenster fraktaler Strukturen aufweist.
|
|
Zum Verhalten der Zahlenfolge siehe auch
- Mandelbrot-Menge#Verhalten der Zahlenfolge - Artikel in der deutschen Wikipedia
Zu vielen weiteren Themen siehe auch
- Mandelbrot-Menge - Artikel in der deutschen Wikipedia
Literatur
- Benoît Mandelbrot: Die fraktale Geometrie der Natur. ISBN 3-7643-2646-8.
- John Briggs, F. David Peat: Die Entdeckung des Chaos. ISBN 3-446-15966-5.
- Heinz-Otto Peitgen, Peter H. Richter: The Beauty of Fractals. ISBN 0-387-15851-0.
- Heinz-Otto Peitgen, Dietmar Saupe: The Science of Fractal Images. ISBN 0-387-96608-0.
- Karl Günter Kröber: Das Märchen vom Apfelmännchen – 1. Wege in die Unendlichkeit. ISBN 3-499-60881-2.
- Karl Günter Kröber: Das Märchen vom Apfelmännchen – 2. Reise durch das malumitische Universum. ISBN 3-499-60882-0.
- Dierk Schleicher: On Fibers and Local Connectivity of Mandelbrot and Multibrot Sets, in: M.Lapidus, M. van Frankenhuysen (eds): Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot. Proceedings of Symposia in Pure Mathematics 72, American Mathematical Society (2004), 477-507, 1999, pdf
Weblinks


- The Encyclopedia of the Mandelbrot Set (englisch)
- Animationen zur Zoomfahrt im hiesigen Artikel – bis zu 1024×768 Pixeln
- Video Mandelbulb
- Robert Devaney: Unveiling the Mandelbrot Set. Bei: Plus.Maths.org.
Einzelnachweise und Anmerkungen
- ↑ Robert Brooks, J. Peter Matelski: The dynamics of 2-generator subgroups of PSL(2,C). In: Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference. In: Annals of Mathematics Studies. Band 97, Princeton University Press, Princeton, N.J., 1981, S. 65–71. PDF.
- ↑ Benoît Mandelbrot: Fractal aspects of the iteration of for complex . In: Annals of the New York Academy of Sciences. 357, 249–259.
- ↑ Robert P. Manufo: Escape Radius. Bei: mrob.com. 19. November 1997.
- ↑ Lei Tan: Similarity between the Mandelbrot set and the Julia sets. In: Communications in Mathematical Physics. 1990, Band 134, Nr. 3, S. 587–617. PDF. Bei: ProjectEuclid.org.
- ↑ Mitsuhiro Shishikura: The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets. März 1998, Band 147, Nr. 2, S. 225–267. Online. Bei: JStor.org.
- ↑ John H. Hubbard: Local connectivity of Julia Sets and bifurcation loci. Three Theorems of J.-C. Yoccoz. Hubbard zitiert in seiner Arbeit auf Seite 511 ein unveröffentlichtes Manuskript von J.-C. Yoccoz. PDF. 1993.
- ↑ Numerical estimation of the area of the Mandelbrot set (2012), online
Dieser Artikel basiert auf einer für AnthroWiki adaptierten Fassung des Artikels Mandelbrot-Menge aus der freien Enzyklopädie de.wikipedia.org und steht unter der Lizenz Creative Commons Attribution/Share Alike. In Wikipedia ist eine Liste der Autoren verfügbar. |