Schwarzes Loch

Aus AnthroWiki
Wechseln zu: Navigation, Suche
Computersimulation eines nichtrotierenden Schwarzen Lochs von 10 Sonnenmassen, wie es aus einer Entfernung von 600 km aussähe. Die Milchstraße im Hintergrund erscheint durch die Raumzeitkrümmung verzerrt und doppelt. Die Bildbreite entspricht einem Blickwinkelbereich von 90°.

Ein Schwarzes Loch ist ein astronomisches Objekt, das in seiner unmittelbaren Umgebung eine so starke Gravitation erzeugt, dass weder Materie noch Information (etwa Licht- oder Radiosignale) diese Umgebung verlassen kann. Nach der Allgemeinen Relativitätstheorie verformt eine ausreichend kompakte Masse die Raumzeit so stark, dass sich ein Schwarzes Loch bildet.

Ereignishorizont und Schwarzschild-Radius

Der Begriff „Schwarzes Loch“ wurde 1967 durch John Archibald Wheeler etabliert (nicht aber erfunden). Er verweist auf den Umstand, dass sich im Außenraum von hinreichend kompakten Massen oder Energieanhäufungen ein durch den Ereignishorizont (eng. event horizon) charakterisiertes Raumgebiet bildet, in das Materie nur hineinfallen, aber nicht wieder hinausgelangen kann (Loch), und das auch eine elektromagnetische Welle, wie etwa sichtbares Licht, niemals verlassen kann und daher schwarz erscheint.

Bei statischen Schwarzen Löchern mit einer zentralen Singularität bei LaTeX: r = 0 ist der Ereignishorizont identisch mit dem sog. Schwarzschild-Radius LaTeX: r_{\mathrm S}. Mit der Gravitationskonstante LaTeX: G = 6{,}673\;84\;(80) \cdot 10^{-11}\,\mathrm{{m^3}/{kg \cdot s^2}} [1] und der Lichtgeschwindigkeit LaTeX: c=299\,792\,458\;\mathrm{m/s} errechnet er sich wie folgt:


LaTeX: r_\mathrm{S} = \frac{2 G M}{c^2} = M \cdot1{,}485\cdot10^{-27}\frac{\mathrm{m}}{\mathrm{kg}}

Für die Masse der Sonne beträgt der Schwarzschild-Radius LaTeX: 2952\;\text{m}, für die Erde LaTeX: 9\;\text{mm}[2]

Singularität

Ein statisches schwarzes Loch mit seiner zentralen Singularität

Die sogenannte Singularität im Inneren des schwarzen Lochs ist jener Ort, an dem die Gravitation so stark wird, dass die Krümmung der Raumzeit divergiert und in diesem Sinn „unendlich“ ist. Die Frage, ob es auch nackte Singularitäten geben kann, d.h. Singulatitäten ohne Ereignishorizont, ist noch nicht geklärt.

Hawking-Strahlung

Quantentheoretische Überlegungen von Stephen Hawking (1942-2018) zeigen, dass jedes Schwarze Loch dennoch auch Strahlung abgibt. Dies scheint im Widerspruch zu der Aussage zu stehen, dass nichts das Schwarze Loch verlassen kann. Jedoch lässt sich der Vorgang als Produktion von Teilchen/Antiteilchen-Paaren nahe am Schwarzschildradius deuten, bei dem eines der Teilchen ins Zentrum des Schwarzen Lochs fällt, während das andere in die Umgebung entkommt. Auf diese Weise kann ein Schwarzes Loch Teilchen abgeben, ohne dass etwas den Ereignishorizont von innen nach außen überschreitet. Die Energie für diesen Hawking-Strahlung genannten Prozess stammt aus dem Gravitationspotential des Schwarzen Lochs. Das heißt, es verliert durch die Strahlung an Masse.

Von außen betrachtet sieht es also so aus, als würde das Schwarze Loch „verdampfen“ und somit langsam kleiner werden. Den Teilchen der Hawking-Strahlung kann eine Wellenlänge und damit auch eine Temperatur zugeordnet werden. Diese Temperatur ist umgekehrt proportional zu der Masse des Schwarzen Lochs. Aus Sternen der Hauptreihe entstandene Schwarze Löcher sind allerdings so kalt, dass sie nur sehr wenig Hawking-Strahlung abgeben. Ihre Temperatur ist deutlich niedriger als die Temperatur der Hintergrundstrahlung, was bedeutet, dass das Schwarze Loch mehr Energie und damit Masse aus der Wärmestrahlung des Universums aufnimmt, als es durch Hawking-Strahlung abgibt.

Siehe auch

Literatur

Einzelnachweise

  1. CODATA Recommended Values. National Institute of Standards and Technology. Abgerufen am 17. Juni 2011. Wert für die Gravitationskonstante in Basiseinheiten
  2. Florian Scheck: Theoretische Physik 3: Klassische Feldtheorie. Springer, Berlin 2005, ISBN 3-540-23145-5, S. 354. Online-Version bei Google Books. Abgerufen am 21. Februar 2012.
Dieser Artikel basiert (teilweise) auf dem Artikel Schwarzes Loch aus der freien Enzyklopädie Wikipedia und steht unter der GNU Lizenz für freie Dokumentation und der Creative Commons Attribution/Share Alike. In der Wikipedia ist eine Liste der Autoren verfügbar.