Sojabohne

Aus AnthroWiki
Wechseln zu: Navigation, Suche
Sojabohne
Soybeans.jpg

Sojabohne (Glycine max)

Eurosiden I
Ordnung: Schmetterlingsblütenartige (Fabales)
Familie: Hülsenfrüchtler (Fabaceae)
Unterfamilie: Schmetterlingsblütler (Faboideae)
Gattung: Glycine
Art: Sojabohne
Glycine max
(L.) Merr.

Die Sojabohne (Glycine max (L.) Merr.), häufig auch einfach als Soja (von jap. shōyu für Sojasauce)[1] bezeichnet, ist eine Pflanzenart aus der Unterfamilie Schmetterlingsblütler (Faboideae) innerhalb der Familie der Hülsenfrüchtler (Leguminosae oder Fabaceae).

Der Anbau der Nutzpflanze Sojabohne ist seit einer Zeit zwischen 1700 und 1100 v. Chr. in Nordostchina als Nahrungspflanze nachgewiesen. Die Sojabohne wird heute auf sechs Prozent der globalen landwirtschaftlichen Nutzfläche angebaut und ist die weltweit wichtigste Ölsaat. Ihre zunehmende Bedeutung spiegelt sich in dem seit den 1970er Jahren von allen Nutzpflanzen höchsten Zuwachs an Anbaufläche wider. Während 1960 17 Millionen Tonnen produziert wurden,[2] waren es 2012 253,1 Millionen Tonnen.[3]

Sojabohnen enthalten etwa 20 Prozent Öl und 37 Prozent Eiweiß. Die Eiweißqualität ist mit der von tierischem Eiweiß vergleichbar, was die Sojabohne von anderen Pflanzen abhebt. Direkt von Menschen konsumiert werden etwa zwei Prozent der geernteten Sojabohnen. Der überwiegende Anteil der Sojaernte wird als Sojakuchen (rund 80 Prozent der Rohmasse) aufgrund des hohen Eiweißgehalts zu 98 Prozent in der Tierproduktion verfüttert. Das verbleibende Sojaöl wird vor allem als Lebensmittel, aber z. B. auch für die Produktion von Biodiesel verwendet.[2]

Beschreibung und Ökologie

Illustration
Zygomorphe Blüten
Reife Hülsenfrucht

Vegetative Merkmale

Die Sojabohne ist eine einjährige krautige Pflanze mit bräunlicher Behaarung. Da es sehr viele Convarietäten und Varietäten gibt, sind auch die morphologischen Merkmale sehr unterschiedlich. Am häufigsten sind aufrecht wachsende Sorten von 20 bis 80 Zentimeter Wuchshöhe. Hochwüchsige Sorten erreichen bis zwei Meter Höhe. Die Stängel sind eher dünn und mehr oder weniger verzweigt. Die meisten Sorten sind an Stängeln, Blattstielen und Blättern fein und dicht behaart.

Es gibt Sorten mit unbegrenztem (indeterminiertem) Wachstum. Die Mehrzahl der Sorten hat jedoch ein begrenztes Wachstum, da die Endknospe der Triebe sich zum Blütenstand entwickelt, und die Pflanze somit nicht weiterwächst. In höheren Breitengraden werden erstere Sorten bevorzugt.

Die wechselständig am Stängel angeordneten Laubblätter sind in Blattstiel und Blattspreite gegliedert. Der Blattstiel ist relativ lang. Die Blattspreite misst in der Breite mehr als 10 Zentimeter. Sie ist unpaarig gefiedert und besteht meist aus drei Blättchen, die mit ein bis zwei Nebenblättchen versehen sind. Die ganzrandigen Blättchen sind bei einer Länge von 3 bis 10 Zentimetern sowie einer Breite von 2 bis 6 Zentimetern oval. Die Laubblätter werden noch während der Fruchtreifung abgeworfen.

Sojabohnen haben ausgeprägte Pfahlwurzeln von bis zu 1,5 Meter Länge. Die Wurzeln werden von dem sojaspezifischen Knöllchenbakterium Bradyrhizobium japonicum besiedelt. In dieser Symbiose erhält die Pflanze von den Bakterien den wichtigen Nährstoff Stickstoff in pflanzenverfügbarer Form. Beim Anbau von Soja auf Böden, in denen die Bakterien nicht von Natur aus vorhanden sind (etwa bei europäischen Böden) erfolgt eine Beimpfung des Saatgutes mit den erforderlichen bakteriellen Symbionten.[4]

Generative Merkmale

Die Sojabohne ist eine Kurztagspflanze. Beim Anbau unter Langtagbedingungen verlängert sich die Wachstumszeit durch Verzögerungen bei der Blütenanlage und Abreife der Samen.[4]

Die drei bis zwanzig achselständigen Blüten sitzen an kurz verzweigten Stielchen und stehen in seiten- oder endständigen traubigen Blütenständen zusammen. Ihre Färbung variiert gewöhnlich von blasslila bis dunkelviolett. Sie sind mit 5 bis 6 Millimetern Länge relativ klein und in der Regel selbstbefruchtend. Die Blühperiode erstreckt sich meist über drei bis vier Wochen.

Die zwittrigen Blüten sind zygomorph und fünfzählig mit doppelter Blütenhülle. Sie weisen zehn Staubblätter auf. Davon sind neun Staubfäden zu einer Röhre verwachsen. Das zehnte, oberste Staubblatt ist frei und liegt den verwachsenen Staubblättern an. Der Griffel ist gerade.

Nur 20 bis 80 Prozent der Blüten setzen Hülsenfrüchte an. Die behaarten Hülsenfrüchte sind 2 bis 10 Zentimeter lang und bei der Reife strohgelb, grau oder schwarz und enthalten ein bis fünf Samen. Die braunen, grünen oder schwarzvioletten Samen sind kugelig, ei- oder nierenförmig, flach oder gewölbt. Die Tausendkornmasse reicht von 50 bis 450 Gramm. Die Ernte der Sojabohnen kann vollmechanisiert durch Mähdrescher erfolgen.[5][6]

Chromosomenzahl

Die Chromosomenzahl beträgt 2n = 40.[7]

Schädlinge und Krankheiten

Bekannte Schädlinge der Sojabohnenpflanze sind die Sojabohnenzystennematode, die zur Gruppe der Fadenwürmer gehört, der Baumwollkapselbohrer, verschiedene Stinkwanzen (insbesondere die Art Piezodorus guildinii), der Asiatische Sojarost (Phakopsora pachyrhizi) und der Pilz Fusarium virguliforme. Der Pilz führt zum „Sudden-death-Syndrom“ (SDS), das ein akutes Absterben der Sojapflanze zur Folge hat.[8]

Herkunft und Geschichte

Ursprung in China, Japan und Südostasien

Die Sojabohne stammt von der Wildform Glycine soja ab. Die ältesten Belege für eine Nutzung nicht-domestizierter, kleiner Soja-Samen durch den Menschen stammen aus Nordchina (7000 v. Chr.) und Japan (5000 v. Chr.). Die ältesten Belege für große, gezüchtete Bohnen stammen aus Japan (3000 v. Chr.) und Korea (1000 v. Chr.). In China ist sie seit der Zhou-Dynastie (ca. 500 v. Chr.) weit verbreitet.[9] In China galt sie damals zusammen mit Hirse als eine der wichtigsten Nahrungsmittelpflanzen.[10]

Verbreitung

Für Europa entdeckt wurde Glycine max von Engelbert Kaempfer, der sie nach seiner Japan-Reise 1691/92 erstmals beschrieb. Aus dem Jahre 1737 gibt es erste Belege, dass die Sojabohne in Holland in botanischen Gärten gezogen wurde, 1739 auch in Frankreich. In Europa erlangte der Anbau jedoch nie eine Bedeutung. Samuel Bowen brachte die Sojabohne 1765 erstmals in die USA.

Der frühe internationale Bedeutungszuwachs der Sojabohne erklärt sich nicht allein durch ihren hohen Öl- und Proteingehalt und die hohe Ertragsstabilität, da diese teilweise erst im 20. Jahrhundert durch enorme Forschungsanstrengungen erreicht wurden.[11]

Anfänge in den USA

Von der ersten Erwähnung der Sojabohne in der US-Agrarstatistiken 1924 bis zum Zweiten Weltkrieg stieg die Anbaufläche von 767.000 auf 4.220.000 ha an. Der überwiegende Teil der Ernte wurde bis Ende der 1930er Jahre jedoch nicht in Ölpressen verarbeitet. 1925 wurden nur 6 % der Ernte gepresst, 1939 hingegen bereits 71 %. Der Grund für den massiven Produktions- und Pressungszuwachs lag in der erst beginnenden Kooperation zwischen Landwirten und Verarbeitern. So wurden im Forum der 1919 gegründeten American Soybean Association (ASA) im Jahr 1928 erste bindende Abnahmegarantien geschlossen. Anfang der 1930er erreichte die ASA die Etablierung prohibitiver Importzölle auf Sojabohnen, die das Doppelte des Marktpreises betrugen. Die so geschützte US-Sojabohnenproduktion konnte sich daher ausdehnen.[11] Dennoch wurde die Sojabohne zunächst nur im industriellen Bereich eingesetzt. Anfang der 1930er wurden 95 % des Sojaöls zur Farb- und Firnisherstellung eingesetzt. Im Bereich der menschlichen Ernährung war das potenziell für die Margarineproduktion verwendbare Sojaöl der Konkurrenz des Kokosnussöls aus den Philippinen unterlegen, unter anderem aufgrund des relativ markanten und starken Geschmacks des Sojaöls. Daher erschien eine zukünftige Bedeutung der Sojabohne für die Ernährung unwahrscheinlich. Der Industrielle Henry Ford verarbeitete Sojamehl zu Plastik, welches er in der Autoproduktion verwendete. Doch seit Mitte der 1930er wurde unter dem Einfluss der ASA auch die Verarbeitung von Kokosnussöl besteuert.[11]

Neben dem Schutz vor ausländischer Konkurrenz begünstigten weitere Faktoren den Aufstieg der Sojabohne. Z. B. setzte die Motorisierung der Landwirtschaft größere Flächen frei, die zuvor für den Futteranbau für Zugtiere verwendet worden waren. Bauern, die sich brachliegenden Flächen und sinkenden Einkommen gegenübersahen, erhofften sich von der Sojabohne eine Antwort auf ihre Probleme. Die Sojabohne wurde so auch „Goldene Bohne“, „Cinderella“ und „Wunderfrucht“ genannt. Sie wurde auch aufgrund ihrer stickstoffbindenden Eigenschaften in der Verbesserung der Bodenfruchtbarkeit gelobt. Die Sojabohne konnte zudem mit denselben Mähdreschern geerntet werden wie Weizen. Die Marktpreise waren deutlich höher als für Mais. Die ASA startete Kampagnen, um die Bohne unter Landwirten im Mittleren Westen zu größerer Bekanntheit zu verhelfen. Zudem wurden auf Soja spezialisierte Forschungseinrichtungen und -programme etabliert. Die Zuchtstationen importierten Tausende von Sorten aus China. Schließlich wurde das Aminosäureprofil identifiziert, und Sojamehl begann, Fleisch-, Fisch- und Baumwollsamenmehl als Viehfutter zu verdrängen.[11]

Zweiter Weltkrieg

Der Zweite Weltkrieg verhalf der Sojabohne zu weiteren starken Bedeutungszuwächsen in den USA. Der Krieg stimulierte die Wirtschaft und erhöhte die Güternachfrage, insbesondere nach Lebensmitteln. Nach dem Angriff auf Pearl Harbor war das Land zudem von Kokos- und Palmölimporten abgeschnitten und musste diese Angebotseinbrüche wettmachen. Die Regierung führte Garantiepreise für Sojabohnen und Subventionen für die Verarbeitungsindustrie ein. Die Preise verdoppelten sich so während des Krieges. Auch die Schweine- und Geflügelfleischproduktion nahm um 40–50 % zu und verschaffte dem zuvor eher als Nebenprodukt der Ölgewinnung angesehenen Sojamehl einen massiven Bedeutungsgewinn als Futtermittel. Auf Druck der ASA verpflichteten sich Margarinehersteller 1947, nur noch amerikanische Rohstoffe zu verwenden.[11] Anders im nationalsozialistischen Deutschland. Dort strebte man die direkte Einbringung der wertvollen Pflanze in die menschliche Nahrung an. Die Nationalsozialisten hatten ihr Augenmerk auf die Sojabohne geworfen, da sie mit ihrem hohen Anteil an biologisch vollwertigen Eiweißen sehr gut geeignet war, die sogenannte „Eiweißlücke“ zu schließen, die wegen der Autarkiebestrebungen Deutschland drohte.

Nachkriegszeit und internationale Verbreitung

Sojabohnenernte in Michigan, 2006

Die nordamerikanische Produktion dehnte sich nach dem Krieg stark aus und versechsfachte sich so zwischen 1946 und 1970. Während unmittelbar nach dem Zweiten Weltkrieg nur wenig Soja exportiert wurde, stieg dieser Anteil bis 1970 auf 40–57 %. Die Exporte versorgten europäische Ölmühlen, die von amerikanischen Firmen insbesondere in den 1960er Jahren gebaut wurden. Die Verwendung von Sojamehl als Futtermittel in Europa wurde von Anbauverbänden ebenfalls angeregt. Auch die amerikanischen Lebensmittelhilfen und der Abbau von Bevorzugungen von Ölimporten aus Drittländern im Rahmen der Europäischen Wirtschaftsgemeinschaft (EWG) begünstigten die weitere Etablierung der europäischen Nachfrage nach Sojabohnen.[11]

Seit den 1970er Jahren nahm die Sojabohnenproduktion in Nordamerika weiter zu. Insbesondere in Südamerika gewann sie massiv an Bedeutung. Im Süden Brasiliens begann die Sojabohne Kaffee zu verdrängen. Heute produziert Südamerika mehr Sojabohnen als Nordamerika.[10]

Durchschnittliche Zusammensetzung

Die Zusammensetzung von Sojabohnen schwankt naturgemäß, sowohl in Abhängigkeit von den Umweltbedingungen (Boden, Klima) als auch von der Anbautechnik (Düngung, Pflanzenschutz).

Angaben je 100 g reifer, getrockneter Sojabohnen:[12]

Bestandteile
Wasser 8,5 g
Eiweiß 34,3 g
Fett 18,3 g
Kohlenhydrate 6,3 g*
Ballaststoffe 22,0 g
Mineralstoffe
Natrium 5 mg
Kalium 1800 mg
Magnesium 220 mg
Calcium 200 mg
Mangan 2,7 mg
Eisen 6,6 mg
Kupfer 1,2 mg
Zink 4,2 mg
Phosphor 550 mg
Vitamine
Retinol (Vit. A1) 65 µg
Thiamin (Vit. B1) 1000 µg
Riboflavin (Vit. B2) 460 µg
Nicotinsäure (Vit. B3) 2600 µg
Vitamin B6 1000 µg
Folsäure 240 µg
Vitamin E 1500 µg
Essentielle und semi-essentielle Aminosäuren
Arginin1 2360 mg
Histidin1 830 mg
Isoleucin 1780 mg
Leucin 2840 mg
Lysin 1900 mg
Methionin 580 mg
Phenylalanin 1970 mg
Threonin 1490 mg
Tryptophan 450 mg
Tyrosin 1250 mg
Valin 1760 mg

* Differenzberechnung
1 semi-essentiell
1 mg = 1000 µg

Der physiologische Brennwert beträgt 1866 kJ je 100 g essbarem Anteil.

Verwendung

Futter- und Lebensmittel

In der Anbausaison 2008/09 wurden 91 % der Sojaernte in Ölmühlen gepresst. Produkte der Pressung sind zu etwa 90 % Sojamehl und zu 10 % Sojaöl.[13] Das Öl wird in erster Linie im Lebensmittelbereich als Salat- und Kochöl, sowie Brat- und Backfett benutzt.[14] Das Mehl wird vor allem als Futterzusatz (Ergänzungsfutter) für Geflügel (ca. 46 %) eingesetzt. Auch Rinder (ca. 20 %) und Schweine (ca. 25 %) werden mit Sojamehl gefüttert. Zu einem geringen Anteil (ca. 3 %) wird es beispielsweise als texturiertes Soja vor allem in der vegetarischen bzw. veganen Ernährung als proteinreiches Lebensmittel verwendet. Weitere verbreitete Produkte sind: Tofu, Sojasauce, Sojamilch und Sojajoghurt. In fermentierter Form sind besonders verbreitet: Miso, Tempeh, Nattō oder Yuba und dessen Variante Bambus (engl.: bamboo). Die Verdaulichkeit von Sojabohnen ist durch den relativ hohen Gehalt an Stachyose und Raffinose erschwert. Stachyose ist ein Mehrfachzucker, der vom Menschen nicht verdaut wird, vielmehr wird die Stachyose im Dickdarm durch Bakterien abgebaut, wobei Gase entstehen (Flatulenz). Es wird daher versucht, den Gehalt an Stachyose und Raffinose durch Genveränderungen zu vermindern. Allerdings gibt es auch natürliche Sojasorten mit geringerem Stachyosegehalt.[15] Die frischen, grünen Hülsen („Schoten“) dienen außerdem direkt der menschlichen Ernährung (siehe Edamame).[16]

Sojasprossen

Bei dem im Deutschen fälschlich als „Sojasprossen“ bezeichneten Sprossengemüse handelt es sich oftmals um Keime der Mungbohne.[17] Diese Sprossen werden in den meisten Ländern Asiens verwendet. In der Chinesischen und Koreanischen Küche werden jedoch auch echte Sojasprossen verwendet.

Medizinische Aspekte

Die Sojabohne ist reich an sogenannten Phytoöstrogenen – pflanzlichen Verbindungen mit hormonähnlicher Wirkung. Deren Hauptvertreter, die Isoflavone Genistein und Daidzein, sind das Objekt zahlreicher aktueller Forschungsarbeiten. Sie wurden vor allem mit der niedrigeren Inzidenz (Häufigkeit) von Gefäßkrankheiten wie der koronaren Herzkrankheit in ostasiatischen Ländern in Verbindung gebracht,[18] in denen Soja in viel höheren Mengen konsumiert wird als in Westeuropa und den USA.[19] Aufgrund der Datenlage von 1999 erlaubte die amerikanische Arzneimittelzulassungsbehörde Food and Drug Administration (FDA) auf Sojaprodukten das Anbringen der werbenden Aussage: „Eine an gesättigten Fettsäuren und Cholesterin arme Diät, die 25 g Sojaprotein pro Tag enthält, kann das Risiko von Herzerkrankungen reduzieren.“[20] Aufgrund neuerer Forschungsergebnisse ist diese Werbeaussage innerhalb der EU ab 2012 nicht mehr erlaubt.[21]

Das geringere Auftreten von Tumorerkrankungen wie Brustkrebs[22] und chronisch-entzündlicher Darmerkrankungen in diesen Ländern wurde mit dem höheren Phytoöstrogenkonsum in Verbindung gebracht, so dass Sojaisoflavonprodukte in jüngerer Vergangenheit mit Hinweis auf diese Eigenschaften intensiv beworben werden. Bisher gibt es wenige Nachweise der Wirksamkeit für diese Indikation. Eine chinesische Studie zeigte eine Senkung des Risikos für Lungentumore.[23]

Es gibt Forschungsergebnisse, die auf eine schädliche Wirkung hochkonzentrierter Isoflavone hindeuten. So bewirkten diese zum Beispiel in der Zellkultur eine Zunahme des programmierten Zelltods in Herzmuskelzellen neugeborener Schweine.[24] Andere Forscher vermuteten zunächst einen Zusammenhang zwischen erhöhter Aufnahme von Isoflavonen aus Sojaprodukten und verringerter Spermienqualität,[25] auch hier sind die Forschungsergebnisse widersprüchlich.[26]

Da auch in Europa inzwischen viele Verbraucher zu Soja-Produkten greifen, hat die Zahl der Allergiefälle zugenommen. Besonders Birkenpollenallergiker können betroffen sein: „Ursache für die Kreuzreaktion ist das zur Gruppe PR-10 gehörende Stressprotein Gly m 4, dessen Struktur dem Birkenpollenallergen Bet v 1 ähnelt (50 %ige Sequenzhomologie). Eine Schwellendosis für die Auslösung einer pollenassoziierten Sojaallergie kann nicht angegeben werden. Oftmals reicht aber bereits ein geringer Schleimhautkontakt mit dem Allergen, um eine Reaktion auszulösen. Repräsentative Zahlen über betroffene Verbraucher gibt es nicht. Schätzungsweise leiden rund 16 % der Bevölkerung in Europa an einer Pollenallergie, von denen rund 10 bis 20 % (d. h. 2 bis 3 % der Bevölkerung) eine Kreuzallergie mit Sojabohneneiweiß entwickeln.“ (Zitat: BfR)[27]

Verwendung von Sojaöl und Sojalecithin in der Medizin

Pharmazeutisch verwendet werden kann das gereinigte Sojaöl (Sojae oleum raffinatum Ph. Eur.), außerdem hydriertes Sojaöl (Sojae oleum hydratum Ph. Eur.), partiell hydriertes Sojaöl (Sojae oleum ex parte hydrogenatum DAB, ÖAB), Sojalecithin (Lecithinum vegetabile ex soja) und entöltes Sojalecithin (Sojae lecithinum desoleatum DAB).

Wirkstoffe im Sojaöl sind: Fettes Öl (ca. 18-25 %) überwiegend mit Glyceriden der Linolsäure, Ölsäure und Linolensäure, nur wenig Stearinsäure und Palmitinsäure. Wirkstoffe im gehärteten Sojaöl sind dagegen hauptsächlich Glyceride der Stearinsäure und der Palmitinsäure.[28]

Bei der Gewinnung des Sojaöls fällt als Nebenprodukt Sojalecithin an, ein Gemisch aus Phosphatiden, insbesondere Phosphatidylcholin. Das Sojalecithin besteht zu 35–50 % aus einem Protein mit reichlich essentiellen Aminosäuren. Weitere Bestandteile sind: Kohlenhydrate, Isoflavone wie Genistein, Daidzin, Formononentin und Cumesterol, Triterpensaponine, Lectine, Sterole und Vitamin E.[28]

Anwendung: Sojaöl steht bei der Weltproduktion pflanzlicher Öle für Nahrungszwecke (als Speiseöl und Rohstoff für die Margarineproduktion) an erster Stelle. Pharmazeutisch verwendet man Emulsionen mit Sojaöl als intravenöse Infusionen zur künstlichen Ernährung, außerdem in Badezusätzen gegen trockene Haut.[28]

Sojalecithin findet breite Nutzung als Lösungsvermittler zwischen wasser- und fettlöslichen Verbindungen, beispielsweise als Ausgangsmaterial für Liposome, bei der Herstellung von Salben, aber auch in der Lebensmittelindustrie (Schokolade, Backwaren).[28]

Bekannt ist die traditionelle Anwendung in Kräftigungsmitteln und als „Nervennahrung“ bei Konzentrationsmangel. Wegen seiner lipidsenkenden Eigenschaften wird Sojalecithin auch zur Unterstützung diätetischer Maßnahmen bei leichten Formen von Fettstoffwechselstörungen, insbesondere bei erhöhten Cholesterin-Werten, herangezogen und auch bei Lebererkrankungen und zur Prophylaxe von Gallensteinen eingesetzt.[28]

Die Isoflavone der Sojabohne sind in jüngerer Zeit im Gespräch, denn die als Phytoöstrogene angesehenen Verbindungen sollen verschiedenste hormonabhängige Beschwerden, beispielsweise in den Wechseljahren, und das Risiko der Entstehung von Osteoporose, Herz- und Kreislauferkrankungen und einigen Krebsarten, besonders Brustkrebs, vermindern.[28]

Eine endgültige Bewertung dieser Pflanzeninhaltsstoffe steht noch aus. Man verweist u. a. auf die sojareiche Ernährung in asiatischen Ländern, wo diese Erkrankungen seltener auftreten. 9 % der täglichen Eiweißaufnahme müssen für diesen Effekt aus Soja stammen![28]

Technische Verwendung

Biodiesel aus Sojaöl

Wie andere Pflanzenöle wird auch Sojaöl für eine Reihe von technischen Anwendungen genutzt. Vor allem in den letzten Jahren nahm seine Verwendung zur Herstellung von Biodiesel und Sojamethylester (SME) in den Vereinigten Staaten stark zu. Biodiesel aus Sojaöl liefert etwa 193 % der in seiner Produktion eingesetzten Energie und reduziert Treibhausgasemissionen gegenüber Treibstoffen aus Erdöl um 41 %. Damit ist es deutlich effizienter als z. B. Ethanol aus Mais. Die Luftverschmutzung ist zudem geringer als bei Ethanol aus Mais.[29]

Außerdem dient es als schnelltrocknendes Öl zur Herstellung von Alkydharzen, Anstrichfarben und Spachtelmassen[30] sowie seit 1987 insbesondere für Druckfarben.[31] So werden in den USA etwa 50 % aller Zeitungen und sogar 75 % aller Tageszeitungen heute mit Druckfarben auf Sojaölbasis gedruckt, in Europa liegt der Anteil bei etwa 15 %.[31]

Die enthaltenen Fettsäuren finden vor allem Verwendung in Kosmetik- und Körperpflegemitteln sowie in einem großen Spektrum weiterer Anwendungen,[30] vor allem als Wirkstoffträger für lipidlösliche Pflanzeninhaltsstoffe und Vitamine sowie als Grundlage für Badeöle und Cremes.[31] Obwohl Sojaöl keine abstoßende Wirkung auf Insekten hat, wird es auch verwendet, um die nur kurze Wirkdauer ätherischer Öle wie Geranienöl zu verlängern.[32][33]

Genom-Forschung

Das Genom der Sojabohne ist das erste eines Hülsenfrüchtlers, das vollständig sequenziert wurde.[34] Es umfasst rund 1,1 Milliarden Basenpaare. Die Forscher kamen bei der Analyse des Genoms unter anderem zu dem Ergebnis, dass es sich vor etwa 59 und 13 Millionen Jahren jeweils verdoppelt hat (Polyploidie). Die Kenntnis der Genomsequenz bildet die Grundlage für ein verbessertes Verständnis und eine bessere Nutzbarkeit der Sojabohne.

Siehe auch

Literatur

  • Norbert Suchanek: Der Soja - Wahn - Wie eine Bohne ins Zwielicht gerät. oekom Verlag, München 2010, ISBN 978-3-86581-216-2,
  • Gunther Franke: Nutzpflanzen der Tropen und Subtropen. Band 3: Spezieller Pflanzenbau. Ulmer, Stuttgart 1994, ISBN 3-8252-1769-8, S. 270–282 (Merkmale).
  • W. Diepenbrock, G. Fischbeck, K.-U. Heyland, N. Knauer: Spezieller Pflanzenbau. 3. Auflage. Ulmer, Stuttgart 1999, ISBN 3-8252-0111-2, S. 240–250 (Merkmale).

Weblinks

Commons-logo.png Commons: Sojabohne - Weitere Bilder oder Audiodateien zum Thema
 Wiktionary: Sojabohne – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. soya. In: Merriam-Webster’s Online Dictionary. Abgerufen am 2010-03-11. (en)
  2. 2,0 2,1 Glen L. Hartman, Ellen D. West, Theresa K. Herman: Crops that feed the World 2. Soybean—worldwide production, use, and constraints caused by pathogens and pests. In: Food Security. Band 3, 2011, S. 5–17. doi:10.1007/s12571-010-0108-x
  3. Statistik der FAO, aufgerufen am 14. September 2013
  4. 4,0 4,1 Klaus-Ulrich Heyland (Hrsg.): Spezieller Pflanzenbau. 7. Auflage. Ulmer, Stuttgart 1996, ISBN 3-8001-1080-6, S. 132.
  5. Klaus-Ulrich Heyland (Hrsg.): Spezieller Pflanzenbau. 7. Auflage. Ulmer, Stuttgart 1996, ISBN 3-8001-1080-6, S. 133.
  6. Ernst Mayerhofer, Clemens Pirquet von Cesenatico: Lexikon der Ernährungskunde. Springer-Verlag, Berlin/ Heidelberg 1926, ISBN 978-3-7091-2127-6, S. 954.
  7. Erich Oberdorfer: Pflanzensoziologische Exkursionsflora für Deutschland und angrenzende Gebiete. 8. Auflage. Verlag Eugen Ulmer, Stuttgart 2001, ISBN 3-8001-3131-5, S. 621.
  8. Andreas Westphal, Chunge Li, Lijuan Xing, Alan McKay, Dean Malvick, Mark Gijzen: Contributions of Fusarium virguliforme and Heterodera glycines to the Disease Complex of Sudden Death Syndrome of Soybean. In: PLoS ONE. 9, 2014, S. e99529, doi:10.1371/journal.pone.0099529.
  9. Gyoung-Ah Lee u. a.: Archaeological Soybean (Glycine max) in East Asia: Does Size Matter? In: PLoS ONE. 6(11), 2011, S. e26720. doi:10.1371/journal.pone.0026720
  10. 10,0 10,1 J. Sauer: Historical geography of crop plants: a select roster. CRC Press, 1993.
  11. 11,0 11,1 11,2 11,3 11,4 11,5 J.-P. Berlan, J.-P. Bertrand, L. Lebast: The growth of the American 'soybean complex'. In: European Review of Agricultural Economics. Band 4, 1977, S. 395–416.
  12.  Lebensmitteltabelle für die Praxis. Der kleine Souci · Fachmann · Kraut. 4. Auflage. Wissenschaftliche Verlagsgesellschaft, Stuttgart 2009, ISBN 978-3-8047-2541-6, S. 239.
  13. USDA Foreign Agricultural Service. Oilseeds Report 10/09. (Memento vom 25. Juli 2013 im Internet Archive) (PDF; 940 kB)
  14. Composition of a Soybean
  15. transgen.de
  16. Soybean Meal Use Review. Iowa Soybean Association (Memento vom 18. Januar 2012 im Internet Archive)
  17. R. M. Nöcker: Das große Buch der Sprossen und Keime – Mit vielen Rezepten. 5. Auflage. W. Heyne Verlag, München, ISBN 3-453-05422-9, S. 154–157.
  18. Menotti u. a.: Food intake patterns and 25-year mortality from coronary heart disease: cross-cultural correlations in the Seven Countries Study. The Seven Countries Study Research Group. In: Eur J Epidemiol. 15(6), 1999, S. 507–515. PMID 10485342
  19. Yamori: Worldwide epidemic of obesity: hope for Japanese diets. In: Clin Exp Pharmacol Physiol. 31 Suppl. 2, 2004, S. 2–4. PMID 15649277
  20. Henkel: Soy: Health Claims for Soy Protein, Questions About Other Components. FDA Consumer magazine. May-June 2000 permanent.access.gpo.gov
  21. European Food Safety Authority (EFSA): Scientific Opinion on the substantiation of a health claim related to soy protein and reduction of blood cholesterol concentrations. In: EFSA Journal. 8(7), 2010, S. 1688. (PDF)
  22. Wu u. a.: Epidemiology of soy exposures and breast cancer risk. In: Br J Cancer. 98(1), 2008, S. 9–14. Epub 2008 Jan 8. PMID 18182974.
  23. Wan-Shui Yang u. a.: Soy intake is associated with lower lung cancer risk. In: Am J Clin Nutr. vol. 94, no. 6, Dezember 2011, S. 1575–1583. ajcn.org
  24. Mau u. a.: Effects of dietary isoflavones on proliferation and DNA integrity of myoblasts derived from newborn piglets. In: Pediatr Res. 63(1), 2008, S. 39–45. PMID 18043503
  25. Jorge E. Chavarro, Thomas L. Toth, Sonita M. Sadio, Russ Hauser: Soy food and isoflavone intake in relation to semen quality parameters among men from an infertility clinic. In: Hum. Reprod. 23/08.
  26. Mark Messina: Soybean Isoflavone Exposure Does Not Have Feminizing Effects on Men: A Critical Examination of the Clinical Evidence. In: Fertility and Sterility. 93 (7), 2010, S. 2095–2104. fertstert.org
  27. Bundesinstitut für Risikobewertung: Sojaprodukte können bei Birkenpollen-Allergikern schwere allergische Reaktionen auslösen Stellungnahme Nr. 016/2007 des BfR vom 17. April 2007 bfr.bund.de (PDF; 114 kB)
  28. 28,0 28,1 28,2 28,3 28,4 28,5 28,6 Ingrid und Peter Schönfelder: Das Neue Handbuch der Heilpflanzen, Botanik Arzneidrogen, Wirkstoffe Anwendungen. Franckh-Kosmos Verlag, Stuttgart 2011, ISBN 978-3-440-12932-6.
  29. J. Hill, E. Nelson, D. Tilman, S. Polasky, D. Tiffany: Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. In: Proceedings fo the National Academy of Sciences. Band 103, S. 11206–11210.
  30. 30,0 30,1 Soybean Oil. In: Hans Zoebelein (Hrsg.): Dictionary of Renewable Ressources. 2. Auflage. Wiley-VCH, Weinheim/ New York 1996, ISBN 3-527-30114-3, S. 264.
  31. 31,0 31,1 31,2 Sabine Krist, Gerhard Buchbauer, Carina Klausberger: Lexikon der pflanzlichen Fette und Öle. Springer Verlag, Wien 2008, ISBN 978-3-211-75606-5, S. 428–434.
  32. D. R. Barnard, R. Xue: Laboratory evaluation of mosquito repellents against Aedes albopictus, Culex nigripalpus, and Ochlerotatus triseriatus (Diptera: Culicidae). In: Journal of Medical Entomology. Band 41, 2004, S. 726–730.
  33. M. S. Fradin, J. F. Day: Comparative efficacy of insect repellents against mosquito bites. In: N. Engl. Journal of Medicine. Band 347, S. 13–18.
  34. Genome sequence of the palaeopolyploid soybean Nature vom 14. Januar 463, 2010, S. 218–222 (englisch)


Dieser Artikel basiert (teilweise) auf dem Artikel Sojabohne aus der freien Enzyklopädie Wikipedia und steht unter der Lizenz Creative Commons Attribution/Share Alike. In der Wikipedia ist eine Liste der Autoren verfügbar.